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Abstract       

A computational study was conducted to develop a reliability-based performance-based 

design methodology for three-dimensional composite frames consisting of steel girders 

and braces framing into RCFT beam-columns. A new mixed finite element formulation 

was developed to simulate the geometrically and materially nonlinear response of both 

RCFT beam-columns and steel members.  The RCFT beam-column element was derived 

with 18 degrees-of-freedom to account for the differential slip displacement between the 

steel tube and the concrete core.  The interface of the steel tube and concrete core 

comprised a layer of nonlinear springs allowing shedding of force between the two 

media.  Comprehensive constitutive relations were derived to model the material 

inelasticity of the steel tube, concrete core, and the steel and concrete interface under 

random cyclic loadings. A corresponding formulation was developed for hot-rolled wide-

flange members to enable modeling of braced and unbraced composite frame structures.  

The constitutive relations were calibrated and verified with respect to experimental tests 

in the literature to account for key nonlinear phenomena such as bond breakage at the 

interface, cracking and confinement of concrete core, residual stress distributions, 

hardening, and local buckling of cold-formed steel tubes and hot-rolled steel members.  

The accuracy of the mixed finite element formulation along with the material constitutive 

relations were tested through analyzing a series RCFT and hot-rolled steel specimens 

from the literature and comparing the computational and experimental response 

parameters.   The verification results confirm that the mixed finite element formulation 

has the capability of producing realistic simulations for RCFT beam-columns, hot-rolled 

steel girders, and RCFT frames subjected to three-dimensional static or transient dynamic 

loading.  The mixed finite element formulation was then utilized to perform demand 

assessment and capacity assessment studies of RCFT frames.  For this purpose, a series 

of RCFT frames were designed according to the up-to-date design specifications.  

Utilizing nonlinear time history analysis, the demand and capacity of these structures 

were quantified, documenting the key response parameters critical for composite 

structures.  The dispersions in the analysis results due to randomness and uncertainties 
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were then evaluated to derive the demand and capacity factors to implement 

performance-based design of RCFT frames within a reliability framework. 
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Chapter 1 
 

1. Introduction 
 
1.1. Steel and Concrete Composite Columns 
 

Composite construction, which integrates steel and concrete materials in 

individual structural members, has been shown to produce efficient design solutions in 

building applications.  This concept blends the most favorable characteristics of steel and 

concrete materials such that structural members may be designed with high strength, 

stiffness, and ductility. 

Composite construction in the U.S. initiated in the 1960’s with the use of 

composite steel girders in high-rise buildings.  In late 1970’s, composite columns started 

to become popular in the construction industry (Hooper et al., 1999).  However, the 

limitations and uncertainties in the available design provisions prevented their wide 

spread and acceptance in the structural engineering communities.  The recent 

computational and experimental studies on composite beam-columns and connections 

helped to improve understanding of their key inelastic characteristics such as slip, 

cracking, confinement, yielding and local buckling (Shakir-Khalil and Zeghiche, 1989; 

Shakir-Khalil and Mouli, 1990; Shakir-Khalil, 1993a, 1993b; Hajjar and Gourley, 1997, 

Hajjar et al., 1997; Schneider and Alostaz, 1997; Hajjar et al. 1998a, 1998b; Koester, 

2000; Peng, 2001; El-Tawil and Deierlein, 2001; Mehanny and Deierlein, 2001; Varma et 

al., 2002a, b; Morino et al., 1993; Kawaguchi, 2000; Nishiyama et al., 2002; Tort and 

Hajjar, 2003;  Lin et al., 2004; Herrera, 2005).  The wealth of information gained from 

the research studies on composite beam-columns culminated in the development Chapter 

I of AISC (2005) design specification.  Compared to its predecessors, in AISC 2005, the 

composite interaction is taken into account more accurately through improved 

quantification of the concrete contribution to the flexural response.  This approach helps 

to reduce the over-conservatism introduced by neglecting the contribution of concrete 
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(Choi et al., 2006).  Despite the improvement in design specifications for non-seismic 

applications, guidance on earthquake resistance design of composite columns still 

remains limited. 

 Three main types of composite beam-columns are commonly used in the 

construction industry as illustrated in Figure 1.1.  Steel-Encased Concrete (SRC) columns 

are made up of a wide-flange steel cross-section placed inside a traditional reinforced 

concrete column.  Concrete- filled steel tube columns are constructed by pouring concrete 

inside rectangular or circular steel tubes, which are designated as rectangular concrete 

filled steel tube (RCFT) and circular concrete-filled steel tube (CCFT), respectively.  The 

manufacturing of the steel tubes is typically performed through cold-formed processes.  

The cold-forming processes to obtain circular or rectangular shape steel tubes are applied 

to a cooled steel plate of desired thickness and the final closed form is obtained with a 

continuous seam weld (Sherman, 1992).  In Japan, China, and Australia, it is also 

common that the steel tube of RCFTs can be formed by welding of four plates at their 

edges or by welding of two channel sections.  The manufacturing technique of the steel 

tubes might significantly affect the structural response since the type and distribution of 

residual stresses depend on the fabrication processes.  However, this feature of the 

composite columns is not addressed in the current design specifications.   

 

 
Figure 1.1 Typical Composite Column Types 

 

SRC RCFT CCFT 
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 Composite columns offer significant advantages over traditional steel and 

reinforced concrete structures.  The steel media contributes to the speed of construction, 

light weight, strength, and ductility while concrete media provides damping, reduced 

cost, and stiffness (Muhummud, 2003).  The increased ductility and strength of the 

concrete is attributed to the confinement pressure generated as a result of the composite 

interaction.  The concrete core of RCFT and CCFT columns force local buckling to occur 

in an outward direction.  Composite columns also maintain a significant proportion of 

their load carrying capacity following the limit states of concrete crushing and steel 

yielding.  Concrete filling adds to the stiffness and strength of the steel columns and it 

allows designing slender members with reduced cross-section sizes. This increases the 

available floor area and reduces the painting costs to achieve an aesthetic appearance or 

rust free surfaces where needed.  Concrete in composite columns acts as a heat sink 

causing a higher resistance against fire loadings.  Under sustained loads, the performance 

of composite columns is often very satisfactory.  The deformation of concrete due to 

creep and shrinkage causes load redistribution and increases the stresses in the steel 

section.  Therefore, a reduction in the capacity of the composite column may take place.  

Despite the creep and shrinkage phenomena observed in composite columns, their effect 

on the load carrying capacity is less pronounced compared to reinforced concrete 

columns.  The long term effects on composite column manifest themselves more 

significantly in the case of slender columns and columns with large concrete area 

(Grauers, 1993).  For RCFT and CCFT columns, the concrete is well protected from 

shrinkage since it is placed inside the concrete core.  The use of composite columns also 

provides benefits in the construction process.  The separation of jobs at the construction 

site can be achieved by erecting the steel frame ahead of the concrete casting operations.  

In the case of RCFT and CCFT columns, no special formwork is required for concrete 

casting, which helps easing the construction operations.   

 The common applications of CCFTs in the U.S can be found in braced frames of 

high-rise buildings.  CCFT columns with diameters ranging from 1 m to 3 m having 

D t/ ratios of about 100 are often used (Roeder et al., 1999).  The two Union Square 

building in Seattle is a typical example of buildings with large diameter and high strength 
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concrete CCFT columns.  The application of RCFT columns in the U.S. is very rare.  

This research study is conducted to understand the behavioral aspect of buildings with 

RCFT columns and augment the existing design provision to promote their use around 

the nation. 

 
1.2. Performance-Based Design Methodology 
 
 Performance-based design (PBD) methodologies in the U.S. have been developed 

for earthquake resistant design of buildings following significant losses in the Loma 

Prieta (1989) and Northridge (1994) earthquakes.  The main motivation has been to 

provide guidelines for designing structures having predictable response at multiple 

loading levels with quantifiable confidence (Krawinkler, 1998).  This approach is 

expected to lead to more economical and safer building population in earthquake prone 

regions.   

PBD allows targeting multiple performance levels describing the damaged state of 

buildings following earthquakes.  The performance levels range from minor damage 

(e.g., Immediate Occupancy) without any appreciable structural failure to significant 

damage that puts the building on the verge of global collapse (e.g., Collapse Prevention).  

Associating the structural performance levels with the expected ground motion hazard 

levels defines the performance objectives.  The performance objectives are selected to 

meet the diverse needs of the stakeholders and they often have the same designation with 

the structural performance levels.  For example, Immediate Occupancy performance 

objective often represents satisfying the Immediate Occupancy performance level under 

earthquake loading with 50 % probability of exceedence in 50 years (50%/50years).  

PBD guidelines provide the engineering procedures and parameters to design structures 

satisfying the selected performance objectives.    

The extensive computational and experimental work in developing PBD 

guidelines for earthquake resistant design culminated in several documents that have 

addressed the implementation of the PBD concepts in the U.S., including VISION 2000 

(1995), ATC (1996), and FEMA (1997a, 2000a, 2000b). VISION 2000 (1995), ATC-58 

(2007) is the pioneering document introducing a general methodology of PBD and 
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describing its main concepts such as performance objectives and seismic evaluation 

techniques.  In VISION 2000 (1995), several design and analysis approaches are 

proposed and their applicability to different structure types and performance levels is 

presented.  FEMA (1997a) and FEMA (2000b) were prepared as the guidelines for 

seismic rehabilitation of all building structures.  The provisions in these two documents 

discuss the improvement of seismic resistance of the overall structural system and its 

components including both structural and nonstructural types.  Therefore, the building 

performance levels are also defined as a combination of individual structural and non-

structural performance levels.  The evaluation of the structural performance levels is 

conducted for each structural component considering their contribution to the global 

system response as primary or secondary.  The structural components are further 

classified with respect to their behavioral pattern as deformation-controlled or force-

controlled.  Based on these classifications, the acceptance criteria of the structural 

components for the targeted performance levels are provided such that they will be 

checked whether the expected damage will exceed the threshold values.  The 

performance evaluation of the structural components is conducted based on either force 

or displacement measures depending on the analysis method adopted in determining the 

force and displacements imposed by the earthquake loading.  The structural performance 

at the global system level is mainly described using qualitative expressions of damage 

without any quantifiable acceptance criteria.  FEMA (1997a) and FEMA (2000b) note the 

uncertainty in the proposed performance evaluations.  However, no methodology to 

calculate the corresponding confidence levels is given.  ATC (1996) provides guidelines 

for seismic retrofit and evaluation of concrete structures.  The structural and non-

structural performance levels are evaluated independently and together they define the 

building performance.  To decide whether a building satisfies a structural performance 

level, design checks are conducted both at the global system level and at the structural 

component level.  The gravity and lateral load resistance of the structure, as well as, the 

lateral deformations are compared to limiting values.  In the case of structural 

components, similar to FEMA (1997a) and FEMA (2000b), classifications are made 

according to their behavioral nature (e.g., deformation-controlled and primary, force-
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controlled and secondary etc.) and the performance is assessed based on force or 

deformation limits.  ATC (1996) introduces a powerful analysis method designated as the 

Capacity Spectrum Method.  This method utilizes the static nonlinear lateral load-

deformation response of the structure with the elastic response spectrum to determine the 

maximum displacement expected under the given earthquake loading.  No confidence 

level calculation method is provided for the performance assessments proposed in ATC 

(1996).  FEMA (2000a) constitutes design recommendations of new steel moment-

frames.  The new connection details developed after the Northridge (1994) earthquake 

are introduced and their design methods are provided.  FEMA (2000a) establishes a 

reliability-based performance evaluation technique applicable to regular welded steel 

moment frames, where uncertainties are taken into account through probabilistic 

confidence statements associated with the targeted performance level.  The performance 

objectives are defined as Immediate Occupancy and Collapse Prevention.  The 

performance evaluation can be made both at the global system level and at the structural 

component level.  The recommended design parameters were selected as interstory drift 

value and axial force on individual columns.    

The first generation of PBD guidelines served well in fulfilling its objectives. 

However, over the last decade, knowledge on structural response to earthquakes, as well 

as information on ground motions, have significantly improved allowing more advanced 

procedures to be used in PBD guidelines.  The ATC-58 (2001) project, a ten-year long 

research program funded by FEMA, was initiated to develop a new generation of PBD 

guidelines for both seismic rehabilitation and new design of building structures.  The new 

generation of PBD guidelines will have performance criteria in terms of direct economic 

losses, casualties, or down-time so that stakeholders can make more informed decisions 

about earthquake resistant design or upgrade of their buildings.  The performance 

evaluation of the buildings will be done considering the interaction between the 

performance of structural components and the global structural system.  Detailed 

guidance about the use of advanced analysis methods such as nonlinear time history 

analysis will also be provided.  The current PBD guidelines offer limited direction 

regarding preliminary design of buildings to satisfy a targeted performance objective.  
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This leads to an expensive trial-error type procedure for design of buildings.  ATC-58 

aims to provide prescriptive guidelines while making decisions about the load-resisting 

system, stiffness, and strength of the structure to meet the desired performance 

objectives.      

 Despite the intensive research efforts following the 1994 Northridge Earthquake, 

the proposed PBD guidelines have remained limited primarily to steel, reinforced-

concrete, and timber structures.  The provisions related to composite construction were 

often prepared as an extension to those related to steel and concrete structures.  There 

exist very few studies towards developing PBD methodologies of composite structures.  

The main focus of this research is to develop a reliability-based PBD methodology for 

structural systems having RCFT columns and steel girders.   

One of the earliest attempts to develop PBD guidelines of composite structures was 

the work by Mehanny and Deierlein (2000), where a computational study was conducted 

to assess the seismic performance of composite frames made up of reinforced concrete 

columns and steel girders.  It was aimed to evaluate the performance both at the 

component (local) and system (global) level.  Damage functions were derived for the 

structural components including reinforced-concrete columns, steel girders, and 

connections. Based on the evolution of the damage of the structural members, the 

available local damage states were mapped on to the performance levels.  A new method 

to evaluate the system performance was proposed utilizing the quantified damage 

assessments.  The stiffness properties of the structural components are updated following 

the time history analysis results for a representative earthquake record.  Then, a nonlinear 

static analysis is conducted under gravity loads until failure state is attained.  The ratio of 

the vertical gravity load capacity to the unfactored gravity loads was defined as a stability 

index identifying the global performance of the structure.  Muhummud (2003) 

investigated the performances of three 6-story RCFT building structures having 

variations with respect to the support conditions.  The buildings were analyzed under a 

suite of far-field earthquake records.  Two hazard levels were considered including 2% 

probability of exceedence in 50 years (maximum considered earthquake) and 10% 

probability of exceedence in 50 years (design basis earthquake).  Static push-over and 
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nonlinear time history analysis were utilized to quantify the demand.  Global response of 

the buildings was examined through global damage parameters e.g., roof drift, residual 

roof drift, base-shear and a stability index (Mehanny and Deierlein, 2000).  The 

performance of the structural members was also studied and the common damage 

parameters investigated were interstory-drift, plastic rotation, and level of axial load.  The 

structures were found to satisfy both Life Safety and Collapse Prevention performance 

objectives defined in FEMA (1997b) and FEMA (2000a).   

 
1.3. Objectives 
  

The primary objective of this research is to develop a performance-based design 

methodology of structures having RCFT columns and steel girders, with an emphasis on 

composite structural response, including development of a new mixed finite element 

formulation for detailed behavioral assessment of the three-dimensional cyclic dynamic 

response of composite RCFT frames.  Within the framework of developing a 

performance-based methodology, the following issues will also be targeted: 

 

1. To identify the failure and local damage characteristics of RCFT beam-columns, and 

frames; 

2. To investigate the capacity of RCFT structures under seismic loadings; 

3. To assess the seismic demand of RCFT structures and determine the effects of 

composite interaction; and other characteristics of RCFT structures on the seismic 

demand; 

4. To quantify the randomness and uncertainty on the demand and capacity evaluation 

of RCFT structures; and 

5. To develop a new reliability-based PBD methodology of RCFT buildings through 

enhancing the existing non-seismic and seismic design provisions.    

6. To utilize mixed finite element methods for the analysis of RCFT frame structures 

under static and dynamic loadings so that their seismic performance can be quantified 

accurately exploiting the superior features of the mixed finite element formulation 
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including the ability to model slip, satisfactory coarse mesh accuracy, and simulation 

of both geometric and material nonlinearities.      

1.4. Research Scope 
 

The objective of this research study requires that the behavioral characteristics of  

RCFT members be explored in detail.  For this purpose, in an initial phase of this work 

reported in Tort and Hajjar (2003, 2004), the experimental studies available in the 

literature were examined and their results were documented in a database.  Only well 

reported studies were considered and the specimens were limited to the ones with steel 

tubes manufactured using cold forming techniques.  The data values stored for the 

specimens provided information about the types of limit states and progression of damage 

seen in RCFT members, connections, and frames.  Utilizing the available data values, a 

damage assessment study was conducted and the effects of local damage levels to the 

structural response were investigated.  This helped to associate those local damage levels 

with the performance objectives.  In addition, the capacity of the RCFT members were 

quantified in terms of deformation and energy-based damage function values.  

 A three-dimensional distributed plasticity beam-column finite element 

formulation was developed to evaluate the seismic demand and capacity of RCFT frames.  

Mixed finite element principles were utilized to develop the computational models of 

RCFT beam-columns and steel girders as components of a moment frame.  Both 

geometric and material nonlinearities were accounted for, as was interlayer slip between 

the steel and concrete along the length.  Comprehensive constitutive relations simulating 

the salient features of RCFT members and steel girders were developed.  This was 

achieved based on the calibration and verification studies that are conducted using the 

information recorded in the experimental database.  Nonlinear connection response was 

not modeled directly in this formulation. 

 Multiple RCFT frame structures were designed following up-to-date design 

provisions.  The building configurations were varied to investigate the governing 

variables affecting their seismic demand and capacity.  The designed structures were 

subjected to a set of ground motion records representing various hazard levels.  Studying 
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the analysis results, the demand imposed on the structural members was quantified as the 

mean values of the appropriate engineering demand parameters.  The capacity of the 

RCFT frames under seismic loads was determined utilizing parametric nonlinear time 

history analysis techniques and the resulting median values of capacity were recorded. 

 A demand and capacity factor approach was then adopted to account for the 

randomness and uncertainty in demand and capacity calculations.  The dispersion in the 

analysis results was processed to obtain confidence levels for performance evaluations of 

RCFT frames, and the resulting reliability-based, performance-based design methodology 

for composite frame structures is presented. 

 
1.5. Overview of the Report 
 
 Chapter 2 describes the theory of the distributed plasticity fiber-based 

geometrically and materially nonlinear mixed finite element formulation.  Chapter 3 and 

Chapter 4 document the development of the concrete and steel constitutive relations to be 

used with the mixed finite element method to analyze RCFT frames, respectively.  

Chapter 5 contains the verification studies performed to assess the accuracy of the mixed 

finite element formulation and the concrete and steel constitutive relations.  Chapter 6 has 

the demand evaluation studies of multistory RCFT frames using nonlinear time history 

analysis.  Chapter 7 describes the methodology to quantify the aleatoric and epistemic 

uncertainties associated with demand and capacity evaluations and also introduces the 

proposed performance-base design methodology.  In Chapter 8, the conclusions of the 

research study and the recommended future work are presented.  Appendix A was 

generated to document the supplemental equations required for the mixed finite element 

theory developed in Chapter 2.      
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Chapter 2  
 

2. Finite Element Formulation of Rectangular 
Concrete-Filled Tube (RCFT) Beams, 
Columns and Beam-Columns 

 
2.1. Introduction 
 

Accurate prediction of nonlinear response of structural members using finite 

element methods is an important consideration in quantifying seismic demand and 

capacity of frames with RCFT columns and steel girders.  Different from traditional 

prescriptive design specifications, performance-based design guidelines often requires 

multiple performance levels (e.g., immediate occupancy, collapse prevention) to be 

considered while evaluating or designing seismically resistance structures.  These 

performance levels can be defined based on limit states involving force, deformation, and 

energy quantities.  Therefore, realistic estimations of the limit states can only be obtained 

if the complete load vs. deformation response of structural members is captured reliably.  

This requires addressing sources of nonlinearities adequately in the analysis model.   

The nonlinearity exhibited in structures under high levels of seismic loading is 

often attributed to material inelasticity (material nonlinearity) and change in the geometry 

of the structure (geometric nonlinearity).  In RCFTs, material nonlinearities due to both 

steel and concrete need attention in the analysis model.  The steel tube is often subjected 

to residual strains and stresses due to cold forming process and welding.  This causes an 

early softening in the modulus of steel before the yielding stress is attained.  Following 

the yielding of the steel tube, strength degradation may be observed due to bi-directional 

stress state of the steel tube and also due to local buckling of the steel tube wall.  

Experiments also show cyclic response that includes cyclic hardening, a decrease in the 

elastic zone of the steel material during cycling, and the Bauschinger effect (Sakino and 

Tomii, 1981; Gourley and Hajjar, 1994).  Concrete cracking, in turn, takes place when 
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the tensile strength of concrete is breached.  At that instant, a steep stress drop occurs and 

the modulus of concrete approaches to zero asymptotically.  In compression, the modulus 

of concrete starts decreasing when the stress level is approximately 30% of the 

compressive strength of concrete.  Once the compressive strength is breached, a strength 

degradation region initiates due to crushing of concrete.  The severity of stress drop in 

this region is determined based on the amount of confinement provided by the steel tube 

and based on the damage accumulation during cyclic response.  A typical characteristic 

feature of RCFT members is that load transfer between the steel tube and the concrete 

core is achieved through the interface connecting these two media.  The load transfer 

mechanism also exhibits a nonlinear response depending on the bond strength and the 

amount of slip.  RCFT columns and beam-columns in frame structures also exhibit two 

types of geometric nonlinearities, including effects due to chord-rotation (P-Δ) and 

member curvature (P-δ).   

Computational models available in the literature for composite steel/concrete 

structures evolved predominantly from prior work on steel and reinforced-concrete 

members.  Following the recent advances in experimental testing (Lin et al., 2004) and 

computational modeling (OpenSees, 2001), it is now possible to account for typical 

characteristics of composite members in the analysis model comprehensively.  In the 

order of increasing complexity, four groups of analysis methods for composite members 

can be distinguished: 

- Strain compatibility method 

- Concentrated plasticity models 

- Distributed plasticity models 

- Continuum models 

In the strain compatibility method, plasticity is assumed to occur over a finite 

length and a plastic hinge length is determined, which is often taken as approximately 

equal to the depth of the steel tube (e.g., Varma, 2000).  The moment of the critical cross-

section located at the middle of the plastic hinge region is calculated based on a given 

curvature by integration of the steel and concrete stresses over the composite cross-

section.  The steel and concrete stresses are calculated from the appropriate constitutive 
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relations.  These relations can be cyclic or monotonic depending on the given curvature 

history.  Once the moment vs. curvature pair of the plastic hinge is obtained, the 

corresponding lateral load vs. displacement pair of the composite member can be attained 

by equilibrium and integration of the curvature along the element length.  This method of 

analysis is often used for cantilever beam-columns (Kawaguchi, 2000).  It is an efficient 

tool and produces accurate simulations.  However, it is crude in accounting for geometric 

nonlinearities and also adopting this method for analysis of frame type structures is 

complicated. 

 In concentrated plasticity formulations, material inelasticity is assumed to be 

limited to plastic hinges (usually of zero length) at the element ends.  Initiation and 

evolution of material inelasticity are often traced by means of multiple surfaces and flow 

rules defined in the stress resultant space.  The element remains elastic if the force point 

stays inside the loading surface.  Plastic deformation starts when the loading surface is 

breached.  The extent of plastic deformation is decided based on the distance between the 

loading surface and the bounding surface.  The bounding surface defines the force state at 

which a limiting stiffness is attained by the structural member.  It has often the same 

shape as the loading surface but it is larger in size as can be seen in Figure 2.1.   

 

 
Figure 2.1 Typical Loading and Bounding Surfaces for CFTs 
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The loading and bounding surfaces harden isotropically and kinematically to simulate the  

load-deformation characteristics of RCFT members observed in the experimental tests.  

In the concentrated plasticity models, an element plastic reduction matrix is derived and 

included in the formulation of the total element tangent stiffness matrix.  The plastic 

reduction matrix becomes effective if the force point contacts the loading surface at either 

end of the structural element.  Throughout the analysis, the plastic reduction matrix is 

updated based on the degree of material inelasticity.  The concentrated plasticity models 

become less accurate for members with high axial loads or for members under uniform 

bending, as in these situations stresses causing inelastic action are distributed along the 

member length rather than concentrated at the member ends.  Therefore, they are often 

used for the analysis of unbraced structures, where elements deform in double curvature 

with maximum moments occurring at the element ends, or otherwise multiple elements 

are used along the member length.  Concentrated plasticity models are computationally 

efficient and they can be easily adopted for frame analysis (Hajjar and Gourley, 1997; 

Hajjar et al., 1997; El-Tawil and Deierlein, 2001a, 2001b). 

 Distributed plasticity models account for the spread of plasticity through 

numerical integration over the volume of the element.  Material inelasticity is monitored 

at the integration points located along the element length.  At each integration point, the 

cross-section is divided into individual material fibers as shown in Figure 2.2.  

Physically, each fiber represents a two-dimensional (2D) media defined by its area, 

located with respect to the centroid of the cross-section, and a constitutive relation.   

In distributed plasticity formulations, an assumption of plane sections remaining 

plane is often exploited to derive the strain at the centroid of each fiber from cross-

sectional deformations.  For the given strain, the stress and modulus of each fiber is 

calculated from the associated constitutive rule.  Performing numerical integration over 

the cross-section, cross-sectional force and stiffness values may be obtained.  Internal 

element forces and element tangent stiffness are calculated by integration of cross-section 

forces and stiffnesses along the element length, respectively.  Compared to the 

concentrated plasticity models, the distributed plasticity approach is numerically more 

elaborate.  However, it produces more accurate results since material inelasticity is traced 
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at multiple points through the cross section and along the element length rather than only 

at the element ends.  The distributed plasticity models are also appealing for analysis of 

RCFT members.  It is possible to account either explicitly or implicitly for the salient 

features of RCFTs (e.g., concrete cracking, confinement, local buckling etc.) using 

comprehensive constitutive relations for the steel and concrete fibers (Schiller and Hajjar, 

1998; Hajjar et al., 1998a, 1998b; Domenech et al., 2002).  As will be seen, accounting 

explicitly for slip between the constituent materials is also possible with distributed 

plasticity formulations. 

 

 
Figure 2.2 Distributed Plasticity Finite Element Formulation 
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members and provides significant information about their nonlinear response.  The steel 
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1998; Varma 2000; Johansson and Gylltoft, 2002; Shakir-Khalil and Al-Rawdan, 1995).  

The composite interaction between the steel tube and concrete core can be modeled both 
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the transverse direction.  In the longitudinal direction, the load transfer can be modeled 

using spring elements (Varma, 2000) or friction models (Schneider, 1998; Johansson and 
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Gylltoft, 2002).  Since multi-dimensional constitutive models are employed to account 

for material inelasticity, softening response of the steel tube due to bidirectional stresses 

and confinement of concrete can be captured more reliably.  In addition, local buckling of 

the steel tube can be treated as a geometric nonlinear phenomena rather than simulating it 

as a material nonlinear phenomena by degrading the steel tube strength, as may be done 

with concentrated or distributed plasticity formulations.  Despite the improved accuracy 

and rationality of the 3D continuum analysis, it is computationally expensive for 

analyzing complete frame structures.  

 This chapter presents a distributed plasticity model for static and transient 

analysis of composite frames comprised of RCFT columns and steel girders (and braces, 

where included).  The finite element formulation developed for RCFT and steel beam-

columns are described.   

  
2.2. Three-Dimensional Distributed Plasticity RCFT Beam-

Column Element 
 
 Finite element formulations available in the literature often adopt different 

approaches based on the type of governing variables in the derivation of element internal 

forces and tangent stiffness matrices.  As its name implies, in displacement (stiffness)-

based formulations, nodal displacements are considered as the primary unknowns.  

Therefore, element deformations are obtained from displacement interpolations.  It is 

common to adopt cubic Hermitian interpolation (shape) functions for transverse 

deformation fields.  This assumption produces a linear distribution of curvature along the 

element length.  However, inaccurate results are obtained in the case of nonlinear 

curvature fields unless the number of finite elements per member is increased.  Element 

equilibrium is satisfied only in the variational sense (Zeinkiewicz and Taylor, 2005).  

Therefore, the element internal forces calculated from the assumed displacement field 

often do not satisfy equilibrium.  This also requires decreasing the mesh size by using 

more finite elements per member.  The displacement-based formulations have been 

studied by many researchers in the literature for steel, reinforced concrete, and composite 

members (e.g., Zeris and Mahin, 1988; Izzuddin and Elnashai, 1993; Morales, 1994; Teh 
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and Clarke, 1998; Salari et al., 1998; Limkatanyu and Spacone, 2001; Alemdar, 2001).  

Despite the low accuracy of coarse meshes, the displacement-based formulations are 

often considered as easy to implement and expedient methods for analysis of structural 

members.  In the case of composite members, the differential axial movement between 

the steel and concrete media can be derived directly from the deformation fields defined 

in the axial direction.  Therefore, the bond force can be calculated with a direct 

calculation once the constitutive relation is defined for the interface. 

In flexibility (force, equilibrium)-based finite element formulations, element 

internal forces are considered to be the primary unknowns.  The stress resultants along 

the element length are obtained from interpolation functions.  Therefore, element 

equilibrium is strictly satisfied.  The compatibilities of nodal displacements and cross-

section deformations are ensured in a variational sense.  Since internal force distributions 

can be accurately estimated, the flexibility-based formulations provide better coarse mesh 

accuracy under nonlinear curvature fields (e.g., Backlund, 1976; Carol and Murcia, 1989; 

Salari et al., 1998; Neuenhofer and Filippou, 1998; Souza, 2000; Alemdar, 2001).  For 

example, in the case of geometrically linear problems without any distributed span 

loading, a linear distribution of bending moments is always exact independent of the 

irregularity of the curvature field.  The flexibility-based finite element formulations often 

have a computationally expensive and elaborate stiffness calculation and force recovery 

procedure compared to the displacement-based formulations.  For example, calculation of 

the element stiffness matrix requires inversion of the element flexibility.  In addition, the 

cross-section flexibility needs to be calculated by taking the inverse of the cross-sectional 

stiffness matrix when obtaining the cross-section deformations.  In the case of 3D frame 

elements, these inversion operations increase the computation time.  The satisfaction of 

the element compatibility involves iterative operations during the state determination 

process, which also increases the computation time.  With respect to including a slip, 

when modeling composite elements using a flexibility-based formulation, the nonlinear 

distribution of bond forces along the element length is expressed using interpolation 

functions similar to those employed for axial forces and bending moments.  . This results 

in lengthier expressions for internal force and stiffness derivations as compared to mixed 
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and displacement-based formulations because bond forces need to be calculated 

independent of other element forces.        

Mixed (hybrid) finite element formulations offer an alternative method for 

calculation of element internal forces and tangent stiffness matrices by considering both 

displacements and forces as the primary unknowns.  Independent interpolation functions 

are used to estimate element deformation and force fields.  Selecting linear distributions 

of element forces, it is possible to satisfy element equilibrium exactly in the absence of 

geometric nonlinearity or distributed span loading.  In addition, in the mixed finite 

element formulation, the element deformations from an interpolated displacement field 

and the element deformations from an interpolated force field are both assessed and 

enforced to be compatible to each other in a variational sense (Taucer et al., 1991; Nukala 

and White 2004; Alemdar and White 2005).  Therefore, selecting accurate force 

interpolation functions also improves the accuracy of the nonlinear curvature fields.  The 

mixed finite element formulations also have a more complicated force recovery 

procedure than the displacement-based and flexibility-based formulations.  This is due to 

the fact that in mixed-formulations element stiffness and internal force calculations are 

performed based on two primary variables (Alemdar, 2001).  Compared to the flexibility-

based formulations, selecting independent shape functions for the displacements and 

element forces helps in the solution of problems with significant interaction between 

internal forces and nodal displacements (e.g., geometric nonlinearity) because in the 

flexibility-based formulation it becomes difficult to select the appropriate force 

interpolation functions (Ayoub and Filippou, 2000).  On the other hand, incorporation of 

geometric nonlinearity is the least cumbersome in the displacement-based formulations: 

employing comprehensive strain measures and high-degree interpolation functions, it is 

possible to simulate problems with significant nonlinearity.  Nevertheless, it is the mixed 

formulations that provide the best balance between accurate assessment of nonlinear 

curvatures along the length, particularly due to material inelasticity, coupled with 

comprehensive capability to include geometric nonlinearity directly and cohesively in the 

formulation.  In addition, when employing a mixed formulation for modeling of 
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composite members, similar to the displacement-based formulation, the slip response can 

be captured with simplified expressions of internal forces and element stiffness.   

 In this section, a 3D geometrically and materially nonlinear mixed finite element 

formulation for RCFT beam-columns is presented.  Slip between the steel tube and 

concrete core is accounted for following the prior work by Hajjar et al. (1998a, 1998b).  

The governing differential equations of element equilibrium, compatibility, and cross-

section equilibrium are adapted from Alemdar and White (2005).   

2.2.1. Choice of Reference Axes 
 

The deformation of an element can be divided into two components:  the 

deformational displacements straining the element and the rigid body displacements 

causing rigid body rotations and translations.  The deformational displacements are then 

defined with respect to a reference frame that is attached to the chord of the element and 

rotates with it (Crisfield, 1991).  Elements developed in this corotational frame are often 

referred to as corotational elements. 

In a corotational formulation, the deformational displacements are obtained by 

initially excluding (i.e., prior to accounting for) rigid body effects from the global 

element displacements.  This type of decomposition allows representation of the element 

displacements with a reduced number of degrees-of-freedom (DOF).  For example, in the 

case of 3D beam-column elements without torsional effects, two rotational deformations 

at each end and an axial elongation at a single end are sufficient to represent the element 

displacements completely.  Therefore, the lengthy expressions in developing stiffness 

matrices and element internal forces are simplified.  Despite the computational effort 

needed for transformations between corotational and global coordinates, the 

corototational formulation also reduces the number of operations in calculating stiffness 

matrices and element internal forces (Alemdar, 2001).  The DOFs in the corotational 

frame are often designated as element natural DOFs.  The element forces corresponding 

to natural displacements and the element stiffness matrix formulated in the corotational 

frame are referred as natural element forces and natural element stiffness matrix, 
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respectively.  In this study, a corotational approach is employed in formulating the RCFT 

beam-column element.   

2.2.2.  Kinematic Equations 
 

The cross-sectional deformations of a conventional 3D beam-column element 

without torsional effects can be represented by an axial strain (ε ) and two curvatures (κ ) 

about two orthogonal axes.  These deformations are defined for the centroidal axes of the 

element volume and if it is required to obtain similar deformations at an arbitrary point 

on the cross-section, certain transformation rules should be applied as it is described 

while deriving the virtual work equation of equilibrium.  

While defining the cross-sectional strains for an RCFT beam-column element, the 

steel and concrete volumes need to be considered independently.  A total of six 

deformations are introduced including an axial strain and two curvatures defined for the 

concrete core and steel tube, separately, includingε c , κ z
c , κ y

c , ε s , κ z
s , andκ y

s .  All shear 

deformation components of the cross-section, including both torsion and beam shear 

about both axes, are neglected.  The curvatures of the steel tube and concrete core will 

later be constrained to be the same due the rotational compatibility between the two 

media.  Similarly, the corresponding cross-sectional forces are represented by an axial 

force ( P ) and two moments ( M ) defined for the concrete core and steel tube, separately, 

which yields six force components as Pc , Mz
c , M y

c , P s , Mz
s , and M y

s .  The vectorial 

forms of the cross-sectional strains ( d ) and forces ( D ) and their variations are given in 

Equations 2.1 and 2.2, respectively.  In Equations 2.1 and 2.2 and also for the rest of the 

equations in this report, the variables associated with the steel tube or concrete core alone 

are designated by right superscripts where “s” stand for the steel tube and “c” stands for 

the concrete core.  In addition, the δ operator denotes the variation of the adjacent 

variable.  The symbols in bold represent either vector or matrix quantities while the non-

bold symbols designate scalar quantities.   

[ ]d = ε κ κ ε κ κc
z
c

y
c s

z
s

y
s

T
         [2.1a] 
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 In the current formulation large rotations and translations take place with respect 

to the global coordinates due to rigid body motion.  However, by eliminating rigid body 

effects, small curvatures and axial strains are assumed in the corotational frame.  The 

Green-Lagrange strain measure is selected to define the elongation of the element chord.  

The Green-Lagrange strain is presented in Equations 2.3 and 2.4 in terms of the 

deformation fields of u , v , and w  in the x, y, and z directions, respectively.  

 ε c
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c

x
c
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2 2 2          [2.3] 
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x
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2

1
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2 2 2          [2.4] 

The first variation of the axial strains can be obtained as given below in Equations 2.5 

and 2.6. 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )δε δ δ δ δc u u u= + × + × + ×c
x

c
x

c
x

c
x

c
x

c
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c
xv v w w, , , , , , ,
     [2.5] 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )δε δ δ δ δs u u u= + × + × + ×s
x

s
x

s
x

s
x

s
x

s
x

s
xv v w w, , , , , , ,
                 [2.6] 

Curvatures can be expressed as the second derivatives of the translational deformation 

fields as given in Equation 2.7.  The first variations of the curvatures are presented in 

Equation 2.8.  Due to the compatibility of rotations, the curvatures of the steel tube and 

the concrete are imposed to be equal to each other. 

κ z
c

xx
cv= ,  κ y

c
xx
cw= ,  κ z

s
xx
sv= ,  κ z

s
xx
sv= ,        [2.7] 

δκ δz
c

xx
cv= ,  δκ δy

c
xx
cw= ,  δκ δz

s
xx
sv= ,  δκ δz

s
xx
sv= ,        [2.8] 

In this study, the interaction between the steel tube and concrete core is considered to be 

provided by friction and interlocking effects between the two media, or via shear 

connectors.  Therefore, a distributed bond along the element length is assumed to ensure 

the composite action.  In the proposed model, the steel tube and concrete core are 
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separated by a layer of nonlinear springs located at each integration point along the 

element length as shown in Figure 2.3.  In this work, the constitutive calibration of the 

slip springs assumes no shear connectors are present within the tube, but other 

constitutive calibrations of the slip springs may be used.  The slip between the steel tube 

and concrete core is only allowed in the axial direction.  The same transverse 

displacements are assumed via the use of penalty functions (see Section 2.2.13).  The slip 

layer deformation field ( dsc )and its variation (δdsc ) can be expressed in terms of axial 

deformations of the steel tube and concrete core as follows in Equations 9 and 10, 

respectively.  

 
d u usc

s c= −              [2.9] 

δ δ δd u usc
s c= −             [2.10] 

 

 
Figure 2.3 Nonlinear Slip Model 

 

2.2.3. Finite Element Discretization 
 

The element deformations with respect to the corotational frame are selected such 

that when they are transformed into the global coordinates, the steel tube and concrete 

core will have independent translational DOFs.  This approach is adopted to allow the 

slip formation at the interface between the steel tube and concrete core for an arbitrarily 

oriented element.   

Steel tube 

Concrete core

Nonlinear spring layer
us

uc

dsc  
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In the corotational frame, the element deformations ( q ) are comprised of axial 

deformations, rotations at both ends of the member with respect to local y  and z  axes, 

and deformation of the slip layer.  An additional node with a single DOF is defined at the 

middle of the member chord.  With the introduction of this extra mid-node, it is possible 

to have a quadratic interpolation function for the axial deformations.  Defining the axial 

deformation fields in this fashion allows accurate representation of axial strains in the 

presence of nonlinear material response that is different at the two ends of the element, 

particularly in the presence of differential slip along the element length.  In addition, 

utilizing a high degree of interpolation function for the axial deformation fields reduces 

the membrane locking effects (White, 1986; Alemdar, 2001).  Two axial deformation 

DOFs are defined for both the steel tube and concrete core corresponding to the first and 

mid-node of the element.  For the RCFT beam-column element, external loads are 

assumed to be applied only at the element ends.  Therefore, the DOFs corresponding to 

the extra mid-node should be condensed out during transformations of the natural forces 

and natural stiffness from the corotational frame to the global coordinates.  Despite the 

fact that the concrete and steel rotations for an RCFT member are assumed to be the 

same, independent rotational DOFs are defined.  This approach allows quantifying the 

shear force carried by the steel tube and concrete core individually when the natural 

element forces are transformed into the global coordinates.  A DOF for the deformation 

of the slip layer is also introduced in natural coordinates.  A summary of the corotational 

DOFs for the RCFT beam-column element can be seen in Figure 2.4 and in Equation 

2.11.  The notation designating the element deformations in the corotational frame is 

described below:  

em
c  is the axial deformation of concrete between i-end of the member and the 

midpoint node   

ec  is the axial deformation of concrete between i-end and j-end of the member 

θyi
c  is the rotation of the concrete at the i-end node about y axis 

θyj
c  is the rotation of the concrete at the j-end node about y axis 
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θzi
c  is the rotation of the concrete at the i-end node about z axis 

θzj
c  is the rotation of the concrete at the j-end node about z axis 

The corotational deformations corresponding to the steel tube can be described 

similarly 

esc is the deformation of the slip layer 

 [ ]q = e e e e esc c
zi
c

yi
c

zj
c

yj
c s

zi
s

yi
s

zj
s

yj
s

m
c

m
s

T
θ θ θ θ θ θ θ θ        [2.11] 

As was discussed previously, quadratic interpolation functions are employed to represent 

the axial deformation fields ( us , uc ) along the element length.  The transverse 

deformation fields ( v s , vc , ws , wc ) are defined using cubic Hermitian shape functions 

(McGuire et al., 2000).  It is possible to express the deformation, velocity 

( us , uc , v s , vc , ws , wc ), and acceleration ( us , uc , v s , vc , ws , wc ) fields in terms of element 

deformations as given in Equation 2.12. 

 

 
Figure 2.4 Element Deformations in the Corotational Frame 

 
 u N q= ×u          [2.12a] 

u N qc = ×u
c , u N qs

u
s= ×        [2.12b] 

u N qc = ×u
c , u N qs

u
s= ×        [2.12c] 
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u N qc = ×u
c , u N qs

u
s= ×        [2.12d] 

where: [ ]u = u v w u v wc c c s s s T
  

[ ]uc T
= u v wc c c , [ ]u s T

= u v ws s s  

[ ]uc T
= u v wc c c , [ ]u s T

= u v ws s s  

[ ]uc T
u v w= c c c , [ ]u s T

u v w= s s s  
   
 N u is the displacement interpolation functions in matrix form (see Appendix A) 

N u
c is the concrete core displacement interpolation functions in matrix form (see 

Appendix A) 

N u
s is the steel tube displacement interpolation functions in matrix form (see 

Appendix A) 

 The natural element end forces (Q ) are selected to be axial forces and bending 

moments about local y  and z  axis.  They are also defined independently for the steel 

tube and concrete core.  Equation 2.13 shows the element end forces in the corotational 

frame.  Linear interpolation functions are adopted for expressing the force resultants 

given in Equation 2.14.  However, second order moments due to P − δ  effects are 

included in the interpolation functions for the moment field (see Appendix A).  

Therefore, the linear variation of moment field is not valid due to geometric nonlinearity.  

 [ ]Q = P P M M M M P P M M M Mi
c

j
c

zi
c

yi
c

zj
c

yj
c

i
s

j
s

zi
s

yi
s

zj
s

yj
s

T
      [2.13] 

 D N Q= ×D1                         [2.14] 

where: N D1  is the force interpolations in matrix form (see Appendix A) 

2.2.4. The Equation of Equilibrium 
 

The statement of equilibrium in differential form can be obtained considering an 

infinitesimal length ( dx ) and infinitesimal interface area ( dI ) of the proposed RCFT 

beam-column element.  Figure 2.5and Figure 2.6 illustrate the internal element loading 

for the infinitesimal length with respect to the natural coordinate system.  From Figure 

2.5 and 2.6, the corresponding equilibrium equations of axial forces, shear forces, and 
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bending moments can be obtained as given in Equation 2.15.  It was assumed that RCFT 

members exhibit a linear torsional response.  Therefore, torsional moment is excluded in 

the equilibrium equations and it will be incorporated into the formulation later in Section 

2.2.12. 

The nomenclature described in Yang and Kuo (1994) is used in this report in 

order to identify the configurations of the variables that they were defined and referenced.  

Both superscripts and subscripts located to left of a symbol refer to two configurations of 

interest. C1 represents the last converged state and C2 stands for the current state of the 

element body.  A left superscript designates the configuration in which the quantity is 

measured.  If a left superscript is omitted, the quantity is considered as an increment 

between C1 and C2 or between the current and the next C2 configuration (e.g., during an 

iteration process).  A left subscript identifies the reference configuration of the quantity.  

It is a common practice not to use a left subscript if a quantity is defined in the same 

configuration in which it is measured.   
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  [2.15d]  

where: 2 Pc  is the axial force of steel tube in configuration C2 
2Vy

c  is the shear force of concrete core in y direction in configuration C2 

2Vz
c  is the shear force of concrete core in z direction in configuration C2 

2 M y
c  is the bending moment of concrete core in y direction in configuration C2 
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2 Mz
c  is the bending moment of concrete core in z direction in configuration C2 

2 P s  is the axial force of steel tube in configuration C2 
2Vy

s  is the shear force of concrete core in y direction in configuration C2 

2Vz
s  is the shear force of concrete core in z direction in configuration C2 

2 M y
s  is the bending moment of concrete core in y direction in configuration C2 

2 Mz
s  is the bending moment of concrete core in z direction in configuration C2 

2 Dsc  is the force transferred between steel tube and concrete core per unit area in 

configuration C2 (units of force/length2) 

2 uc  is the incremental displacement field of concrete core in x direction with 

respect to configuration C2 

2 vc  is the incremental displacement field of concrete core in y direction with 
respect to configuration C2 
2 wc is the incremental displacement field of concrete core in z direction with 

respect to configuration C2 

2 us is the incremental displacement field of steel tube in x direction with respect 

to configuration C2 

2 v s is the incremental displacement field of steel tube in y direction with respect 

to configuration C2 

2 ws is the incremental displacement field of steel tube in z direction with respect 

to configuration C2 
2 I is the interface area in configuration C2 

 
Differentiating Equations 2.15c and 2.15d with respect to x, and then substituting 

Equation 2.15b, Equations 2.15c and 15d become as follows:  
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The weak form of the equilibrium equations stated above can be obtained if Equations 

2.15a, 2.16a, 216b are multiplied by weight functions and integrated along the element 

length ( L ). 
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            [2.17] 
In order to reduce the order of differentiation of the dependent variables (e.g., 

2 Pc , 2 M y
c , 2 Mz

c , 2 P s , 2 M y
s , 2 Mz

s , 2 Dsc ) and distribute differentiation to the weighting 

 functions (e.g., δ 2u
s , δ 2vy

c , δ 2wy
c , δ 2u

s , δ 2vy
c ,δ 2wy

c ), the integral terms in Equation  

2.17 are reformatted through integration by parts as in Equations 2.18 through 2.23 

(Reddy, 1993).  It should be noted that the integration by parts is applied to the second 

through fifth terms two times until the second derivative of the dependent variables are 

transferred to the weight functions.  Throughout the rest of the discussions and equations, 

the operators “,x” and “,xx” are used as right subscripts representing first and second 

derivatives with respect to the x direction, respectively. 
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Figure 2.5 Internal Element Loading in the x-y plane 
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Figure 2.6 Internal Element Loading in the x-z plane 
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Substituting Equation 2.18 through 2.23 into Equation 2.17, the weak form of equilibrium 

equation becomes as follows: 
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2.2.5. The Virtual work Equation of Equilibrium 
 

The principle of virtual work can be derived substituting the kinematic relations 

stated in Equations 2.1 through 2.10 into Equation 2.24 as given below:   

 

 δ δ2
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d D× × × ×∫ ∫d x + d D d I +sc
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             [2.25] 

where: 2 D  is the cross-sectional forces in C2 

 2 d is the incremental cross-sectional strains with respect to C2  

It should be noted the variation of axial strains defined in Equation 2.24 

( ( ) ( ) ( ) ( ) ( )δε δ δ δc c c c c cv v w w= + × + ×2 2 2 2 2u
x x x x x, , , , ,

 and 

( ) ( ) ( ) ( ) ( )δε δ δ δs s s s s sv v w w= + × + ×2 2 2 2 2u
x x x x x, , , , ,

) does not have the terms of 

( ) ( )2 2u uc c
, ,x x

× δ and ( ) ( )2 2u us s
, ,x x

× δ as given in Equations 2.5 and 2.6.  However, 

these terms represent high order effects that become significant under large axial strains, 

which are not commonly observed for structural members.  Therefore, Equation 2.25 still 

can be considered an accurate representation of equilibrium.   

 In Equation 2.25, the third through seventh terms on the left hand side represent 

the boundary conditions of the RCFT beam-column element.  Introducing the 

interpolation functions of the force and displacement variables given in Equations 2.11 
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through 2.14, the aforementioned expressions can be derived as 2 2q QT
ext× .  Therefore, 

the virtual work equation of equilibrium can further be simplified as follows: 

 δ δ δ2
2

2
2

2d D q Qext
T

sc
T

sc
Td D× × × × − × = 02

0

2

0

2

2 2

d x d I
L L

∫ ∫+      [2.26] 

where: 2 q is the incremental nodal displacements with respect to configuration C2 

 2Qext  is the external load in configuration C2 

The virtual work equation of equilibrium in Equation 2.26 is expressed at the 

cross-section level with the corresponding deformation and force variables.  The 

derivation initiated by writing the partial differential equations obtained through static 

equilibrium of an infinitesimal beam-element.  The final format was attained when the 

weak form of the partial differential equations is derived by performing integration by 

parts.  On the other hand, Hajjar et al. (1998a, 1998b) derived the virtual work equation 

of equilibrium at the material fiber level allowing separate volumes for the steel tube and 

concrete core to be introduced. The derivation was solely based on the statement that the 

work done by external forces and internal stresses are equal to each other.  The 

contributions of the steel tube and concrete core to the equilibrium equation were 

decomposed by defining independent strain and stress resultant terms for the two media.  

It was also assumed that a spring layer exists between these two media for the load 

transfer and an additional term was introduced into the virtual work equation of 

equilibrium to account for the strain energy resulting from the deformation of the layer of 

springs as given in Equation 2.27.  In Equation 2.27, on the left hand side, the first two 

terms represent the work done by internal stresses and the third term designates the 

energy due to slip.  The terms on the right hand side accounts for the work done by 

external loads.   
2

2
2

2
2

2
2 2

2
2

2 2
2

2

2

τ τij
c

V
ij
c 2 c

ij
s

V
ij
s s

sc sc
I

i
c

S

c
i
s

S

s

d V d V d D d I

d S d S
c s

× × + × × + × × =

× × + × ×

∫ ∫ ∫

∫ ∫

δ δ δ

δ δ

2 2

2 2

c c

e e

t u t uc s
    [2.27]  

where: 2τ ij
c is the Cauchy stress tensor of the concrete core in configuration C2  
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2eij
c  is the incremental engineering strain tensor of the concrete core with respect 

to configuration C2 

 2τ ij
s is the Cauchy stress tensor of the concrete core in configuration C2  

2eij
s  is the incremental engineering strain tensor of the concrete core with respect 

to configuration C2 

 2 t i
c is the surface tractions acting on the concrete core in configuration C2 

 2 t i
s is the surface tractions acting on the steel tube in configuration C2 

 2S c is the surface area of the concrete core in configuration C2 

 2S s is the surface area of the steel tube in configuration C2 

 2V c is the volume of the concrete core in configuration C2 

 2V s is the volume of the steel tube in configuration C2 

Since shear strains of RCFT members are neglected, the tensorial quantities of 

Cauchy stress ( 2τ ij
c , 2τ ij

s ) and engineering strain ( 2eij
c , 2eij

s ) become axial stress ( 2σ c , 

2σ s ) and axial strain  ( 2 ec , 2 es ), respectively as scalar variables.  Exploiting the plane 

sections remain plain assumption, the axial strain values of the material fibers at an 

arbitrary location over the RCFT cross-section can be expressed in terms of deformations 

of the centroidal axes (e.g., ε c , κ z
c , κ z

c , ε s , κ z
s , κ z

s ) as given in Equations 2.28 and 

2.29. 

 2 2ec c= ×y dT           [2.28] 
  
 2 2es s= ×y dT           [2.29] 

where: [ ]y = − −1 y z
T

 

 [ ]2 2 2 2d c
z
c

y
c= ε κ κc

T
 

 [ ]2 2 2 2d s
z
s

y
s= ε κ κs

T
 

 y  is the y coordinate of the material fiber on the RCFT cross-section 

 z  is the z coordinate of the material fiber on the RCFT cross-section 
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Substituting Equations 2.28 and 2.29 into Equation 2.27, the virtual work equation of 

equilibrium by Hajjar et al. (1998a, 1998b) becomes as follows: 
2

2
2

2 2
2 2

2
2

2 2
2

2

2

σ δ σ δ δ

δ δ

c T T

c

× × × + × × × + × × =
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∫ ∫ ∫

∫ ∫

y d y d

t u t uc s

2 2
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V

c 2 c s

V

s 2 s
sc sc

I

i
c

S

c
i
s

S

s

d V d V d D d I

d S d S

s

c s

 

             [2.30] 

Separating the volume integrals in Equation 2.30 into area and length integrals: 
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             [2.31] 

where: 1 Ac  is the cross-sectional area of the concrete core in configuration C1 

 1 As is the cross-sectional area of the steel tube in configuration C2 

Evaluating the area integrals in Equation 2.31: 

 

2

0 0

D d D d

q Q q Q

c
L L2 2

2

2
2 2

2
2

2
2 2

2
2

2
2

∫ ∫

∫

× × + × × +

× × = × + ×

δ δ

δ δ δ

c s s

sc sc
I

T
ext
c T

ext
s

d x d x

d D d I
      [2.32] 

where: [ ]2 2 2 2Dc = P M Mc
z
c

y
c

T
, [ ]2 2 2 2D s = P M Ms

z
s

y
s

T
 

[ ]2 2 2 2d c = ε κ κc
z
c

y
c

T
, [ ]2 2 2 2d s s= ε κ κz

s
y
s

T
 

2Qext
c is the external load vector acting on the concrete core degree-of-

freedoms 
2Qext

s is the external load vector acting on the steel tube degree-of-

freedoms  

Equation 2.31 can further be simplified as given below: 
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[ ] [ ] ( )2

0

D D d d q Q Qc
c

L
2

2 2
2
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2

2

s
s

T

sc sc
I

T
ext
c

ext
sd x d D d I∫ ∫× × + × × = × +δ δ δ δ  

              [2.33] 

Based on the kinematic relations of Equation 2.1 and 2.2, the virtual work equation of 

equilibrium becomes: 

 δ δ δ2
2

2
2 2

2

2

2

d D q Qext
T

L

× × + × × − × =∫ ∫2

0

0d x d D d Isc sc
I

T      [2.34] 

Comparing Equations 2.26 and 2.34, it can be seen that the virtual work equation of 

equilibrium written at the material fiber level is identical to that of at the cross-section 

level once the volume integrals are reduced to length integrals. 

 In the case of dynamic analysis, the externally applied loads include inertia and 

damping forces (Zienkiewicz et al., 2005).  Therefore, the virtual work equation of 

equilibrium is modified to account for the work done by the inertia and damping forces as 

given in Equation 2.35.   
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d Dsc
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c c
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   [2.35] 

where: 2ρ c  is the unit weight of the concrete core in configuration C2 

 2ρ s  is the unit weight of the steel tube in configuration C2 

 2μ c  is the viscosity parameter of the concrete core in configuration C2 

 2μ s  is the viscosity parameter of the steel tube in configuration C2 

2 uc  is the incremental displacement field of the concrete core with respect to 

configuration C2 

2 u s  is the incremental displacement field of the steel tube with respect to 

configuration C2 
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2 uc  is the incremental velocity field of the concrete core in configuration C2 
2 u s  is the incremental velocity field of the steel tube in configuration C2 

 2 uc  is the incremental acceleration field of the concrete core in configuration C2 

 2 u s  is the incremental acceleration field of the steel tube in configuration C2 
 

2.2.6. Updated-Lagrangian Formulation 
 

Eulerian (spatial) and Lagrangian (referential) approaches are commonly 

employed for describing the motion of a continuum.  In the Eulerian description, the 

motion is monitored at a fixed spatial location (Bathe, 1994).  On the other hand, in the 

Lagrangian description, the motion of a fixed set of material particles is traced regardless 

of its location in space (Reddy, 1993).  The Eulerian description of motion often works 

well for fluid mechanics applications while the Lagrangian description is widely used in 

the mechanics of solid bodies.  In this study, the governing equations will be developed 

using the Lagrangian description.  

In incremental nonlinear finite element formulations, two different versions of the 

Lagrangian description are followed based on the selection of the reference location 

while defining the state variables (e.g., strain, stress).  In the Updated-Lagrangian 

formulation, all static and kinematic variables are referred to the last converged state 

(C1).  In the Total-Lagrangian formulation, all static and kinematic variables are referred 

to the initial undeformed state (C0).  Bathe and Bolourchi (1979) found that the Updated-

Lagrangian and the Total-Lagrangian formulations produce the same numerical results.  

However, it was shown for many types of formulations that the Updated-Lagrangian 

approach is computationally more efficient.   

The Updated-Lagrangian formulation is adopted in this study and the virtual work 

equation of equilibrium is modified by defining the state variables with respect to the C1 

configuration as given in Equation 2.36. 
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          [2.36] 

where: 1
2d is the cross-sectional strains in configuration C2 with respect to configuration  

C1 

1
2 D  is the cross-sectional forces in configuration C2 with respect to configuration 

C1 

1
2dsc  is the slip layer deformation in configuration C2 with respect to 

configuration C1 

1
2 Dsc  is the force transferred between steel tube and concrete core per unit area in 

configuration C2 with respect to configuration C1 (units of force/length2) 

1
2 uc is the displacement field of the concrete core  in configuration C2 with respect 

to configuration C1 

1
2 u s is the displacement field of the steel tube  in configuration C2 with respect to 

configuration C1 

1
2 uc  is the velocity field of the concrete core in configuration C2 with respect to 

configuration C1 

1
2 u s  is the velocity field of the steel tube in configuration C2 with respect to 

configuration C1 

1
2 uc  is the acceleration field of the concrete core in configuration C2 with respect 

to configuration C1 

1
2 u s  is the acceleration field of the steel tube in configuration C2 with respect to 

configuration C1 

1
2q  is the nodal displacements in configuration C2 with respect to configuration 

C1 
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 1
2Qext  is the nodal forces in configuration C2 with respect configuration C1 

 1ρ c  is the unit weight of the concrete core in configuration C1 

 1ρ s  is the unit weight of the steel tube in configuration C1 
1μ c  is the viscosity parameter of the concrete core in configuration C1 
1μ s  is the viscosity parameter of the steel tube in configuration C1 

 1V c is the volume of the concrete core in configuration C1 

 1V s is the volume of the steel tube in configuration C1 
1I is the interface area in configuration C1 

The strain vectors and force generated at the interface of the steel tube and concrete core 

can be decomposed into the incremental form as in Equation 2.37. 

1
2 1

1d d d= +          [2.37a]  

1
2 1

1d d dsc sc sc= +         [2.37b] 

1
2 1

1
1 1

1D D D D k dsc sc sc sc sc sc= + = + ×           [2.37c] 

1
2 1

1q q q= +          [2.37d] 

1
2 1

1u u uc c c= +            [2.37e] 

1
2 1

1u u uc c c= +             [2.37f] 

1
2 1

1u u uc c c= +            [2.37g]  

1
2 1

1u u us s s= +          [2.37h] 

1
2 1

1u u us s s= +             [2.37i]  

1
2 1

1u u us s s= +             [2.37j]  

where: 1 d is the incremental cross-sectional strains with respect to configuration C1 

1dsc  is the incremental slip layer deformation with respect to configuration C1 

1 q  is the incremental nodal displacements with respect to configuration C1 

1 uc  is the incremental displacement field of the concrete core in with respect to 

configuration C1 
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1 uc  is the incremental displacement field of the steel tube in with respect to 
configuration C1 
1 uc  is the incremental velocity field of the concrete core in with respect to 
configuration C1 
1 u s  is the incremental displacement field of the steel tube in with respect to 

configuration C1 

1 u s  is the incremental velocity field of the steel tube in with respect to 
configuration C1 
1 u s  is the incremental velocity field of the steel tube in with respect to 

configuration C1 

In the Updated-Lagrangian formulation, strain, deformation, and stress resultant 

terms in the C1 configuration are assumed to be known (e.g., 1d , 1D , 1dsc , 1Dsc , 1Q , 1q , 
1u , 1u , and 1u ).  The variation symbol in Equation 2.3 corresponds to a differential 

operator (Reddy, 1993).  Therefore, the variation of the known strain and deformation 

terms at C1 (e.g., δ 1d ,δ 1dsc , δ 1q , δ 1u , δ 1u , and δ 1u ) are considered to be zero, as 

given in Equation 2.5 (see, for example, Bathe and Bolourchi, 1979). 

 δ δ δ δ δ1
2 1

1 1 10d d d d d= + = + =       [2.38a] 

δ δ δ δ δ1
2 1

1 1 10d d d d dsc sc sc sc sc= + = + =      [2.38b] 

δ δ δ δ δ1
2 1

1 1 10q q q q q= + = + =       [2.38c] 

δ δ δ δ δ1
2 1

1 1 10u u u u u= + = + =       [2.38d] 

δ δ δ δ δ1
2 1

1 1 10u u u u u= + = + =       [2.38e] 

δ δ δ δ δ1
2 1

1 1 10u u u u u= + = + =        [2.38f] 

Substituting Equation 2.37 and Equation 2.38 into Equation 2.36, the virtual work 

equation of equilibrium becomes as follows: 
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1 0∫ − × =δ q Qext1
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   [2.39] 

             

2.2.7. Compatibility Equation 
 

The mixed finite element formulation requires satisfaction of compatibility and 

equilibrium equations simultaneously based on the selected variational principle (e.g., 

Hellinger-Reissner, as discussed in Section 2.2.8).  The compatibility equation of the 

RCFT beam-column element will be presented in this section. 

It is possible to obtain the cross-sectional strains defined at each integration point 

from the element displacements.  The deformation fields are approximated by 

interpolation functions.  The kinematic equations introduced in Section 2.2.2 are used to 

calculate the curvatures and elongations of the cross-sections ( d ).  Since in the mixed 

finite element formulation, the internal element force fields are also treated as the primary 

variables, the cross-sectional forces can be obtained from force interpolations.  Then, 

multiplying the cross-sectional force vector with cross-sectional flexibility (see Appendix 

A), the curvatures and elongations at the integration point of interest ( d ) are calculated.  

[ ]d = ε κ κ ε κ κc
z
c

y
c s

z
s

y
s

T
         [2.40] 

The compatibility condition ensures that the cross-sectional strains from the element 

displacements are equal to the ones from the interpolated cross-section forces in a 

variational sense.  The integral form of the compatibility equation can be expressed as: 

 δ 1
2DT

L

d x× − × =∫ ( )1 1
1

0

0
1

d d                     [2.41] 

where: 1 d is the incremental cross-section strains calculated from cross-sectional forces 

and defined with respect to C1 configuration  

 [ ]1 1 1 1 1 1 1d = ε κ κ ε κ κc
z
c

y
c s

z
s

y
s

T
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As presented in Section 2.2.5, the force generated at the interface between the steel tube 

and concrete core is directly calculated from the deformation of the slip layer (dsc ).  This 

implies that the slip deformation calculated from the shape functions ( dsc ) and the slip 

deformation obtained from the force at the interface become equal to each other, and that 

compatibility of the slip layer deformation is satisfied implicitly at each integration point 

along the element length.  Therefore, Equation 2.41 does not contain any strain terms for 

the deformation of the slip layer. 

2.2.8. The Hellinger-Reissner Principle 
 

In the mixed finite element method, the stress-resultants are introduced as one of 

the primary variables.  Using the Lagrange multiplier method, the compatibility equation 

is imposed as a constraint in the total potential energy equation.  The Hellinger-Reissner 

variational principle is stated by taking the first variation of the modified total potential 

energy equation and equating it to zero.  This corresponds to combining Equations 2.39 

and 2.41 as given in Equation 2.42 

 The deformation fields approximated using interpolation functions are substituted 

into the kinematic equations of axial strains and curvatures for deriving the cross-

sectional strains in Equations 2.1a, 2.3, 2.4, and 2.7.  Equation 2.43 represents the cross-

sectional strains in terms of the incremental element deformations.  Equation 2.44 shows 

the first variation of cross-sectional strains in terms of element deformations.  Similarly, 

the deformations of the slip layer can be obtained as given in Equation 2.45 after 

substitution of axial deformation fields of Equation 2.12b into Equation 2.9. 
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               [2.42] 

where: 1 ksc is the tangent stiffness of the interface between steel tube and concrete (in  
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  units of force/length3) in C1 configuration with respect to C2 configuration  

 1
1

1d N q= ×d            [2.43] 

where: 1N d  is the matrix derived from kinematic relations of the strains and    

curvatures in configuration C1 (see Equation A.10 in Appendix A) 

 δ δ
δ1 1d N q= ×1
d           [2.44] 

where: 1N
δd is the matrix resulting from the first variation of cross-section strains 

in C1 configuration (see  Equation A.11 in Appendix A) 

 1 1dsc dsc
= ×1N q           [2.45] 

where:  1N d sc
 is the matrix derived from the kinematic relation of the deformation of the  

slip layer in C1 configuration (see Equation A.12 in Appendix A) 

In Equation 2.46, first variation of the slip layer deformation is introduced as follows: 

 1
1δ δ

δ
dsc dsc

= ×N q1           [2.46] 

where:  1N
δd sc

 is the matrix resulting from the first variation of the deformation of slip 

layer in C1 configuration (see Equation A.13 in Appendix A) 

The first variation of the stress resultant force field ( 1
2 D ) is presented in Equation 

2.47.  The first term on the right hand side of Equation 2.47 can reformatted as given in 

Equation 2.48, by subtracting out the terms of δ 1q  (see Equation A.15 in Appendix A). 

 δ δ δ1
2

1
2

1
2

1
2

1
2D N Q N Q= × + ×D D1 1           [2.47] 

 δ δ δ1
2

1
2D N q N Q= × + ×1

2
2 1 1

2
1D D              [2.48] 

where:  1
2N D2 is the matrix obtained by multiplying the first variation of 1

2N D1 with ( 1
2Q )  

and then subtracting out the terms of δ 1q  (see Equation A.15 in Appendix A) 

Substituting Equations 2.12, 2.43, 2.44, 2.45, 2.46, and 2.48 into 2.42, the Hellinger-

Reissner variational principle can restated as in Equation 2.49. 
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δ

ρ ρ

δ δ δ

1

1
2 1

0

1 1
1

1 1 1

1
2

2 1 1
1

0

1 1 1 1

1

1

1

1 1

q

N D N N q N

Q N d d

N N N N

T

d
T

L

d
T

sc d d
T

sc
I

ext D
T

L

c
u
c T

u
c c

V

s
u
s T

u
s s

V

d x k d I D d I

d x

d V d V

sc sc sc

c s

×

× × + × × × × + × ×

− + × − × +

× × × + × × ×
⎛

⎝
⎜⎜

⎞

⎠

∫ ∫ ∫

∫

∫ ∫

1 1 1

1
2

1 1 1 1

( )

1 I

⎟⎟ × +

× × × + × × ×
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ×

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

+

× × − ×
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=

∫ ∫

∫

1
2

1 1 1 1
1
2

1 1 1
1

0

1 1

1

0( )

q

N N N N q

Q N d d

μ μ

δ

c
u
c T

u
c c

V

s
u
s T

u
s s

V

T
D
T

L

d V d V

d x

c s

1 1 1 1

1
2

1
2

           [2.49]  

The termsδ 1q
T  and δ 1

2Q T are nonzero variables representing the variations of the element 

displacements and forces.  Therefore, Equation 2.49 yields two sets of equations given 

below, with the first representing element equilibrium, and the second representing 

section compatibility: 

g

d x k d I D d I

d x

d V d V

d
T

L

d
T

sc d d
T

sc
I

ext D
T

L

c
u
c T

u
c c

V

s
u
s T

u
s s

V

sc sc sc

c s

=

× × + × × × × + × ×

− + × − × +

× × × + × × ×
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ×

∫ ∫ ∫

∫

∫ ∫

1 1 1

1
2

1 1 1 1

N D N N q N

Q N d d

N N N N

δ δ δ

ρ ρ

( )

1
2 1

0

1 1
1

1 1 1

1
2

2 1 1
1

0

1 1 1 1

1

1

1

1 1

1 I

1
2

1 1 1 1
1
2

1 1

q

N N N N q

+

× × × + × × ×
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ×

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥∫ ∫μ μc

u
c T

u
c c

V

s
u
s T

u
s s

V

d V d V
c s

1 1 1 1

      [2.50]  

V d xD
T

L

= × − × =∫ 1
2N d d1 1 1

1

0

1

0( )            [2.51] 

In the mixed finite element formulation, the stress resultants from force 

interpolation functions and the stress resultants from material constitutive relations 

through numerical integration are ensured to be equal to each other.  This condition is 

stated by a third equation representing the cross-section equilibrium as follows: 

 U D D= − =1
2

1
2 0Σ           [2.52] 

where: 1
2 DΣ is the cross-sectional forces from integration over the cross-section in           
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C2 configuration with respect to C1 configuration and “ Σ  “ used as right 

subscript represents the numerical integration 

 The analysis of the RCFT members using the mixed finite element formulation 

presented above requires the solution of Equations 2.50, 2.51, and 2.52 under a given set 

of external loads for nodal displacements ( q ) and internal element forces (Q ).  However, 

all the aforementioned equations are nonlinear for both q  and Q .  Therefore, these 

equations must be linearized first and then solved in an iterative and incremental manner.  

This process is discussed in the following sections. 

2.2.9. Consistent Linearization of Cross-Section Equilibrium Equation 
 

The cross-section equilibrium expression given in Equation 2.52 is a nonlinear 

function of the state variables 1d and 1
2 D .  During nonlinear analysis, for a given 1

2 D , 

Equation 2.52 is solved yielding the value of 1 d  value to satisfy equilibrium. 

Linearization of Equation 2.52 is performed through expanding it about the current state. 

In this process 1
2 D  is kept as constant due to the fact that the cross-section equilibrium 

equation is used to obtain the cross-section strains for a given set of cross-section forces, 

which are obtained through compatibility relations (see Section 2.2.10). 

U U U d dj j d
d

+

=
= + +1

0
1α

α
α
| ( )Δ         [2.53] 

where the right superscripts j and j + 1designate the previous and current iteration 

numbers, respectively and α  is the Taylor Series expansion parameter.  1
2 DΣ is 

represented in the form of numerical integration of uniaxial stresses (σ ) over the area of 

the RCFT cross-section as shown in Equation 2.54.  In Equation 2.54, the components of 

1
2 DΣ (e.g., 1

2P c
Σ , 1

2 MΣ z
c , 1

2 MΣ y
c , 1

2PΣ
s , 1

2 MΣ z
s , 1

2 MΣ y
s where “ Σ  “ used as right subscript 

represents the numerical integration) are obtained through multiplying the uniaxial 

stresses of the material fibers with the compatibility matrix and integrating all the terms 

over the RCFT cross-section. 
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 1
2

1
2 1D YΣ = × ×∫ T

L

dσ A
0

1

         [2.54] 

where: Y =
− −

− −
⎡

⎣
⎢

⎤

⎦
⎥

1 0 0 0
0 0 0 1

y z
y z

c c

s s
is the compatibility matrix (see Equation  

            A.26 in Appendix A)  

yc  is the y coordinate of the concrete material fiber on the RCFT cross-section 

 zc  is the z coordinate of the concrete material fiber on the RCFT cross-section 

ys  is the y coordinate of the steel material fiber on the RCFT cross-section 

 zs  is the z coordinate of the steel material fiber on the RCFT cross-section 

[ ]1
2

1
2

1
2σ = σ σc s T

 is the uniaxial stress in the concrete ( 1
2σ c ) and steel material 

fibers ( 1
2σ s ) in C1 configuration with respect to C2 configuration  

1 A  is the cross-sectional area  

 The derivative with respect toα  evaluated at α = 0 is performed using chain rule since 

σ  is a function of uniaxial strain of material fibers ( e ) and e  is related to d through the 

assumption of plane sections remain plane as shown below: 

1
2

1
2e = Y d×            [2.55] 

where: [ ]1
2

1
2

1
2e = e ec s T

is the uniaxial strain in the concrete ( 1
2ec ) and steel fibers ( 1

2es )  

in configuration C1  with respect to configuration C2  (see Appendix A1.5) 

Substituting Equation 2.54 and 2.55, the second term on the right hand side of 

Equation 2.53 becomes: 

d
d

d
d

d

d
de

d
d

d

T

T

α
α

α
α

α
α

α α

α

| ( ) | ( )

| ( )

= =

=

+ = × + ×

= × × + ×

∫

∫

0
1

0
1

0
1

U d d Y d d

Y d d

Δ Δ

Δ

1
2 1

1
2 1

1

1

σ

σ

A

e A

A

A

1
2

    [2.56] 

Utilizing Equation 2.55 and representing 1
2e as 1

2e e e= +1
1 , Equation 2.56 becomes as 

given in Equation 2.57. 
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d
d

d
de

d
d

e d

d
de

d
d

d

T

T

α
α

α
α

α
α

α α

α

| ( ) | ( ( ) ( ))

| ( ))

= =

=

+ = × × + + ×

= × × × + × + × ×

∫

∫

0
1

0
1 1

0
1

U d d Y d d d

Y Y d Y d Y d

Δ Δ

Δ

1
2

1
2

σ

σ

1 1 1

1 1

1

1

e A

A

A

A

 

             [2.57] 

Performing the differentiation with respect to α  in Equation 2.57: 

 
d

dα
α

α
| ( )
=

× + × + × = ×
0

1Y d Y d Y d Y d1 Δ Δ        [2.58] 

Substituting Equation 2.58 into Equation 2.57: 

 

d
d

d
d

d
d

e d

d
d

d

T

T

α
α

α
α

α α
| ( ) | ( ( ) ( ))
= =

+ = × × + + ×

= × × × ×

∫

∫

0
1

1
2

0
1 1

1
2

U d d Y d d d

Y d

Δ Δ

Δ

1
2

1
2

σ

σ

e
e A

e
A

A

A

1 1 1

1

1

1

Y

      [2.59] 

In Equation 2.59, the term 
d
d

1
2

1
2

σ
e

represent rate of change axial stress with respect to axial 

strain.  Therefore, 
d
d

1
2

1
2

σ
e

 is equivalent to the tangent modulus ( 1
2Et ) of concrete ( 1

2 Et
c ) and 

steel ( 1
2 Et

s ) fibers as shown in Equation 2.60. 

 
d

d
dT

α
α

α
| ( )
=

+ = × × × ×∫
0

1 1
2U d d Y E dΔ Δt

A

AY 1

1

    [2.60a] 

where: 1
2 1

2

1
2Et

t
c

t
s

E
E

=
0

0
⎡

⎣
⎢

⎤

⎦
⎥ is the tangent modulus matrix at C2 configuration with 

respect to C1 configuration 

Performing the area integration in Equation 2.60 yields the cross-sectional stiffness 

matrix as illustrated in Equation 2.61. 

 Y E d dT d A× × ×
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ × = ×∫ 1

2
1
2

t
A

Y k1

1

Δ Δ                 [2.60b] 
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1
2k is the cross-section stiffness in configuration C1 with respect to configuration 

C2 (see Appendix A) 

The linearized form of cross-section equilibrium can be thus obtained as given in 

Equation 2.62 through substituting Equation 2.61 and 2.56 into Equation 2.52. 

 1
2k d D Dj j× = −Δ

Σ1
2

1
2                     [2.61] 

As it will be described later in Section 2.2.14, Equation 2.61 is used in the forces 

recovery stage of the nonlinear analysis solution algorithm to obtain cross-sectional 

deformations corresponding to the given cross-sectional forces.   

2.2.10. Consistent Linearization of Compatibility Equation 
 

The element compatibility stated in Equation 2.51 is nonlinear with respect to  

the state variables of 1 q and 1
2Q  since 1d and 1 d are functions of 1

2Q  and 1 q , respectively 

(see Appendix A).  The incremental form of the compatibility equation needed to derive 

the consistent tangent stiffness equations can be obtained by consistent linearization.  The 

Taylor series expansion of Equation 2.51 about the current state can be stated as in 

Equation 2.62.  The second and third terms on the right hand side of Equation 2.33 are 

expanded using the rules of differentiation following the substitution of the terms 

( )1q q+ αΔ and ( )1
2Q Q+ γΔ .  The third term on the right hand side of Equation 2.62 is 

simplified into a single term since 1
2N D1 and 1 d  are not functions of  1

2Q  and therefore 

their derivative with respect to γ vanishes.  

 V V V q q V Q Qj j d
d

d
d

+

= =
= + + + +1

0
1

0
1
2

α
α

γ
γ

α γ α γ
| ( ) | ( )

, ,
Δ Δ        [2.62] 

where:

d
d

d
d

d x

d
d

d x

D
T

L

D
T

L

α
α γ

α

α

α γ α γ

α γ

| ( , ) | ( ) ( )

| ( )

, ,

,

= =

=

+ + = × − × +

× − ×

∫

∫

0
1 1

2

0
1
2

1 1 1
1

0

1
0

1 1
1

0

1

1

V q q Q Q N d d

d d

Δ Δ

1
2N

   

 
d

d
d

d
d xD

T
L

γ
α γ

γα γ α γ
| ( , ) | ( )

, ,= =
+ + = − × ×∫

0
1 1

2
1

0
1

0

1

1

V q q Q Q N dΔ Δ 1
2   
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γ ,α are the Taylor Series expansion parameters 

Through expanding the expression in Equation 2.62, the second term on the right hand 

side can be expressed as given below: 

d
d

d
d

d x
d

d
d x

d
d

d x

D
T

L

D
T

L

D
T

L

α
α γ

α α

α

α γ α γ α γ

α γ

| ( , ) | ) ( ) |

|

, , ,

,

= = =

=

+ + = ×
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ × − + × × −

× ×

∫ ∫

∫

0
1 1

2

0
1

1

0
1 1 1

0
1

1

0

1
0

1
0

1 1

1

V q q Q Q N d d d

d

Δ Δ (1
2

1
2

1
2 1

N

N

            [2.63]  

Despite the fact that the term 1
2N D1 represents force interpolation functions, it is still a 

function 1
2q  to account for second order moments (e.g., P − δ ).  In the first integral term 

on the right hand side of Equation 2.63, substituting the variables of 1
2θ θzi

c
zi
c+ αΔ , 

1
2θ θzj

c
zj
c+ αΔ , 1

2θ θzi
c

zi
c+ αΔ , 1

2θ θzj
c

zj
c+ αΔ , 1

2θ θzi
s

zi
s+ αΔ , 1

2θ θzj
s

zj
s+ αΔ , 1

2θ θzi
s

zi
s+ αΔ , 

1
2θ θzj

s
zj
s+ αΔ into 1

2N D1 , performing differentiation of the terms of the 1
2N D1 with respect to 

α , evaluating the integration along the element length at α = 0 , multiplying the result of 

the integration with 1 1d d− , and finally factoring out the terms of Δ q , Equation 2.64 is 

obtained as given below: 

  
d

d
d xD

T
L

dα α γ
| ( ) ( )

, =
×

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ × − = ×∫

0
1
2

1
1

0
1 1

1

N d d M qΔ        [2.64] 

In the second term on the right hand side of Equation 2.63, 1 d is stated in terms of nodal 

displacements through replacing it with the expression 1
1N qd ×  as given in Equation 

2.65 (see Equation 2.43). 

 1
2 1

1
2 1 1N ND

T
L

D
T

Ld
d

d x
d

d
d x1

0
1

0
1

0
1

0

1 1

× × = × × ×
= =

∫ ∫α αα γ α γ
| ( ) | ( )

, ,
d N qd      [2.65] 

In Equation 2.65, 1 q is replaced by 1q q+ αΔ and differentiation with respect to  α  at 

α = 0 is performed as shown in Equation 2.66. 
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( ) ( )1

2 1 1
1
2 1 1

1
2 1 1

N N

N

D
T

L

D
T

L

D
T

L

d
d

d x
d

d
d x

d x

1
0

1
0

1
0

1
0

1
0

1 1

1

× × × = × × × ×

= × × ×

= =
∫ ∫

∫

α α
α

α γ α γ
| | (

, ,
N q N q + q

N q

d d

d

Δ

Δ

   [2.66] 

Performing the integration in Equation 2.66 along the element length and factoring 

out Δ q : 

 1
2 1 1

1
2N D

T
L

d x1
0

1

1

× × × = ×∫ N q G qd Δ Δ            [2.67] 

While expanding the third term on the right hand side of Equation 2.63, chain rule of 

differentiation is utilized since the variable 1d can not be expressed in terms of 

1q explicitly.  1d  is related to 1
2 DΣ  through cross-section constitutive relation (e.g., 

1
1

1
1d k D k D D= × = × −− −1 1

1
2 1

Σ Σ Σ( ) ) . 1 DΣ is a function of 1 D  as it is presented in cross-

section equilibrium equation (see Equation 2.52). 1 D  can be stated in terms of 1q since 

the N D1 matrix having force interpolation functions contains nodal displacement terms.  

Therefore, the third term on the right hand side of Equation 2.63 is obtained as given 

below: 

 

( )

1
2 1

1
2 1

1
2

1
2

1
2 1

2 1

1
2

1
2

1
2 11

N d N
d

D
D
D

D

N k N Q

D
T

D
T

LL

D
T

L

d
d

d x d x

d x

1
0

1 1
000

1 1
1

00

11

1

× × = × × × ×
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

= × × × × ×
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

= =

−

=

∫∫

∫

α
∂

∂
∂
∂

∂
∂α

∂
∂α

α γ α γ

α γ

| ( ) |

|

, ,

,

Σ

Σ

D1

   [2.68] 

where: ∂
∂

1

1
2

1d
D

k
Σ

= −1 , ∂
∂

1
2

1

DΣ

D
= 1, 1

2
1
2

1 1
2D= N QD ×    

1
2 DΣ  is the cross-sectional forces  in C2 configuration from integration over the 

cross-section defined with respect to C1 configuration  

1Q is the incremental natural end forces defined with respect to C1 configuration 

In Equation 2.68, the  1 q  terms of 1
2

1N D (e.g., 1
2

1N D  is a function of 1
2 1

1q q= + q  

) is replaced by 1 q q+ αΔ terms (e.g., 1θ θzi
c

zi
c+ αΔ , 1θ θzj

c
zj
c+ αΔ , 1θ θzi

c
zi
c+ αΔ , 

1θ θzj
c

zj
c+ αΔ , 1θ θzi

s
zi
s+ αΔ , 1θ θzj

s
zj
s+ αΔ , 1θ θzi

s
zi
s+ αΔ , 1θ θzj

s
zj
s+ αΔ ) and differentiation 
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with respect to α  at α = 0 is evaluated.  The resulting expression is multiplied with 

1Q yielding N D2  as given below: 

 ( )∂
∂α α γ

|
, =

× =
0

1
2

1
2

1 1
2

2N Q ND D  (see Equation A.15 in Appendix A)     [2.69] 

Substituting Equation 2.69, Equation 2.68 becomes: 

 1
2 1

1
2

1
2 1

1
2

12N d N k N HD
T

L

D
T

D

Ld
d

d x d x1
0

1
0

1
1 1

2
0

1 1

× × = × × × =
=

−∫ ∫α α γ
| ( )

,
      [2.70] 

While expanding the third term in Equation 2.63, differentiation of 1 d with respect to the 

Taylor series expansion term of γ is performed using the chain rule of differentiation.  

Since 1 d  can not be directly related to 1
2Q , first 1 d is related to 1

2 DΣ  through cross-

section constitutive relation of 1
1

1
1d k D k D D= × = × −− −1 1

1
2 1

Σ Σ Σ( ) .  Then, 1
2 DΣ is expressed 

in terms of 1
2 D  based on the cross-section equilibrium.  Finally, 1

2 D is related to 1
2Q using 

force interpolation functions (e.g., 1
2 D N Q= ×1

2
1 1

2
D ).  Therefore, the third term of Equation 

2.63 can be obtained as given below: 

( )( )

1
2

1
2

1
2

1
2

1
2

0
1
2 1

1
2

1
2

1
2

1
2

0
1
2

1 1
2 1

N d N
d

D
D
D

D

N
d

D
D
D

N Q Q

D
T

L

D
T

L

D
T

L

d
d

d x d x

d x

1
0

1
0

1
1

1

0

1
1

0

1 1

1

× × = × × × ×

= × × × × + × ×

= =

=

∫ ∫

∫

γ
∂

∂
∂
∂ γ

∂
∂

∂
∂ γ

α γ α γ

α γ

| ( ) | ( )

|

, ,

,

Σ

Σ

Σ

Σ Δ

d
d

d
d D γ

             [2.71] 

Evaluating the differentiation with respect to γ  at γ = 0 and integrating the resulting 

expression along the element length, Equation 2.71 becomes: 

 1
2

1
2 1 1

1
2

D1
1

1
2

11N d N k N Q= H Q-
D
T

L

D
T

Ld
d

d x d x1
0

1
0

1
1

0

1 1

× × = × × ×
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ × ×

=
∫ ∫γ α γ

| ( )
,

Δ Δ    [2.72] 

Substituting Equation 2.72, 2.70, 2.67, 2.64 into Equation 2.63, the linearized form of 

compatibility can be derived as given below in Equation 2.73.  

 V V G M H q H Qjj j+ = + + − × − ×1
1
2( )1 1

2
12 11d

j j jΔ Δ       [2.73] 

where: 1
2

1
2 1G N N1 1

1

0

1

= × ×∫ D
T

d

L

d x
δ
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 1
2

1
2

1
2 1H N k N11 1

1 1
1

0

1

= × × ×−∫ D
T

D

L

d x  

1
2

1
2

1
2H N k N12 1

1 1
2

0

1

1

= × × ×−∫ D
T

D

L

d x  

1
2k −1 is the cross-section flexibility matrix in C1 configuration or inverse of cross-

section stiffness  in C1 configuration (see Section A1.5 in Appendix A) 

Md is a matrix defining the results from the expansion process, as defined in 

Equation A.19 in Appendix A and in Equation 2.64. 

From Equation 2.73, Δ Q can be solved as given below: 

 ( ) ( )Δ ΔQ H V H G M H qd
j j= × + × + − ×− −

1
2

1
2

1
2

1211
1

11
1

1
2

1

j j j j( )      [2.74] 

Equation 2.74 is used in deriving the element stiffness matrix as it will be described in 

Section 2.2.11 and Section 2.2.15. 

 The element compatibility equation also needs to be expanded when 1 d is kept 

constant.  The resulting expression is used during the state determination stage of the 

nonlinear analysis to calculate the incremental element end forces (see more details in 

Section 2.2.14).  Adopting the same processes of differentiation as in Equation 2.62: 
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where: 
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Expanding the second term on the right hand side of Equation 2.75 as described while 

deriving Equation 2.72, V j+1 can be expressed as given below: 

 V V H Qjj j+ = − ×1
1
2

11 Δ          [2.76] 

From Equation 2.76, Δ Q can be solved as given in Equation 2.77. 

 ( )Δ Q H V= ×1
2

11
-1 j j             [2.77] 

2.2.11. Consistent Linearization of Equilibrium Equation  
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Linearization of the equilibrium equation yields expressions to derive the element 

tangent stiffness.  Examining Equation 2.50, it can be seen that the equilibrium equation 

is expressed in terms of the states variables including 1 q , 1
2Q , 1

2Qext , 1
2q , and 1

2q .  The 

Taylor series expansion of the equilibrium equation about the current state can be 

expressed as follows: 
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               [2.78] 

The expanded forms of the terms on the right hand side of Equation 2.78 are 

obtained following the substitution of the variables 1q q+ αΔ , 1
2Q Q+ γΔ , 

1
2Q Qext ext+ βΔ , 1

2q q+ θΔ , 1
2q q+ ηΔ , performing the differentiation with respect to the 

Taylor Series expansion parameters of α ,γ , β ,θ ,η and evaluating the derivatives when 

α = 0 ,γ = 0 , β = 0 , θ = 0 , and η = 0 .  The details of the expansion process for the 

terms on the right hand side of Equation 2.78 are presented in Equation 2.79. 

In Equation 2.79, the first term on the right hand side is expanded through 

substituting  1q q+ αΔ into 1N
δd  and expressing 1

2 D  in terms of force interpolation 

functions ( 1
2

1
2

1 1
2D N Q= ×D ).  Following the differentiation with respect to α  at α = 0, 

Δ q is factored out from the resulting expression to derive the geometric stiffness matrix 

( 1
2 K g ) as given in Equation 2.80. 

In the second term on the right hand side of Equation 2.79, 1
2 D  is expressed in 

terms of force interpolation functions as 1
2

1
2

1 1
2D N Q= ×D .  The nodal displacement values 
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in 1
2N D1 are replaced by 1q q+ αΔ .  Next, differentiation with respect to α  at α = 0 is 

performed and Δ q is factored out from the resulting expression.  Carrying out the 

integration along the element length, Equation 2.81 is obtained.    
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The third term on the right hand side of Equation 2.79 vanishes since 1N
δdsc

is not a 

function of 1 q : 
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In the fourth term on the right hand side of Equation 2.79, 1 q is replaced by 

1q q+ αΔ and differentiation with respect to α  at α = 0 is performed to obtain the slip 

stiffness matrix ( 1
2 K sc ) as shown in Equation 2.83.  
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  [2.83] 
The fifth, sixth, and seventh terms on the right hand side of Equation 2.79 vanishes since 

differentiation of the terms N
δdsc

, 1Dsc , and N D2  with respect to α  at α = 0 are zero.  
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Expanding the eighth term on the right hand side of Equation 2.79 yields Equation 2.87 

given below: 
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             [2.87] 
In Equation 2.87, 1 d is replaced by 1N qd × 1 and 1q q+ αΔ is substituted for 1 q  as shown 

in Equation 2.88.   
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Evaluating the differentiation of the first term on the right hand side of Equation 2.88 

atα = 0, Equation 2.89 is obtained as follows: 
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In the second term on the right hand side of Equation 2.88, differentiation is performed 

using the chain rule of differentiation given below in a similar way while deriving 
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Equation 2.68.  Then, 1q q+ αΔ is substituted into 1
2N D1 and the differentiation is 

evaluated atα = 0. This process is followed by factoring out Δ q , which yields Equation 

2.90 as given below:  
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              [2.90] 

Substituting Equation 2.90 into Equation 2.89 and evaluating the integration along the 

element length yields Equation 2.91. 
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The ninth, tenth, and eleventh terms do not have any variables that are functions of 1 q .  

Therefore, differentiation of these terms with respect to  α  at α = 0 becomes zero as 

shown in Equation 2.92 through 2.94.     
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The expansion process of the second term on the right hand side of Equation 2.78 is 

summarized in Equation 2.95. 
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In the first term on the right hand side of Equation 2.95, 1N
δd is not function of the 

variable 1
2Q .  Therefore, the differentiation with respect to γ evaluated at γ = 0 vanishes 

and the integration along the element length becomes zero as given in Equation 2.96. 
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While expanding the second term on the right hand side of Equation 2.95, 1
2 D  is stated in 

terms of force interpolation functions as 1
2

1
2D= N Q1

2
1D ×  and 1

2Q  is replaced by 

1
2Q + Qγ × Δ .  Following the evaluation of differentiation with respect to γ  at γ = 0 and 

factoring out the term Δ Q , Equation 2.97 is derived as given below: 
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Performing the integration of Equation 2.97 along the element length: 
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In the third, fourth, fifth, and sixth terms on the right hand side of Equation 2.95, the 

variables on which differentiation is being performed are not functions of 1
2Q .  Therefore, 

the result of the differentiation and integrations of the aforementioned terms become zero 

as stated in Equation 2.99 through 2.102.  
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In the seventh term on the right hand side of Equation 2.95, the nodal force values in 

1
2N D2  (e.g., 1

2 Pc , 1
2 P s ) are replaced by 1

2Q Q+ γΔ  (e.g., 1
2P Pc + γΔ c , 1

2P Ps + γΔ s ).  

Performing the differentiation of the terms of N D2 with respect to γ at γ = 0, the 

resulting expression is multiplied by ( )1 1d d− .  Carrying out the integration along the 

element length and factoring out the term Δ Q , Equation 2.103 is derived as given below:  
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The eighth term on the right hand side of Equation 2.95 can be decomposed into two 

parts as shown in Equation 2.104 
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           [2.104] 

In the first term on the right hand side of Equation 2.104, differentiation of 1d with 

respect to γ vanishes since 1 d is not a function of 1
2Q .  Therefore, the integration along 

the element length also becomes zero as given below: 
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The second term on the right hand side of Equation 2.104 is first expanded through 

substituting the cross-section constitutive equation of 1
1d k D-= ×1

1 .  Then, 1 D  is 

expressed in terms force interpolation functions as1 1
2

1 1D= N QD × .  1Q  is rewritten in 

terms of 1
2Q  as 1 1

2Q Q Q= -1 .  Differentiation with respect to γ is performed replacing 1
2Q  

by 1
2Q + Qγ × Δ  and it is evaluated atγ = 0.  Carrying out integration along the element 

length, Equation 2.106 is derived. 
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          [2.106] 

Substituting Equation 2.106 and 2.105 into Equation 2.104: 
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The rest of the terms on the right hand side of Equation 2.95, including the ninth, tenth, 

and eleventh terms do not have any variables that are functions of 1
2Q .  Therefore, the 

differentiation and also the integrations of these terms become zero as shown in 

Equations 2.108, 2.109, and 2.110. 
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The expanded form of the fourth term on the right hand side Equation 2.78 is presented 

below: 
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           [2.111] 

On the right hand side of 2.111, the only non-zero expression is the ninth term, since the 

rest of the terms do not have variables that are functions of 1
2Qext .  In the ninth term, the 

differentiation is performed with respect to β  and it is evaluated at β = 0   resulting in 

Equation 2.112. 
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The expanded form of the fifth term on the right hand side Equation 2.78 is presented 

below: 
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           [2.113] 

In Equation 2.113, all the terms on the right hand side except the tenth term are not 

functions of the variable 1
2q .  Differentiating the tenth term with respect to  θ  and 

evaluating it atθ = 0 , Equation 2.114 is obtained as given below: 
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The expanded form of the sixth term on the right hand side Equation 2.78 is given in 

Equation 2.115.  In Equation 2.115, all the terms on the right hand side except the 

eleventh term are not functions of the variable 1
2q .  Differentiating the tenth term with 

respect to  η  and evaluating it atη = 0 , Equation 2.116 is obtained.  Substituting 

Equations 2.80 through 2.86, 2.91 through 2.94, 2.99 through 2.103, 2.107 through 2.110, 

2.112, 2.114, and 2.116 into 2.78, the expanded form of the equilibrium equation can be 

restated as in Equation 2.117. 
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where: 1 1 1 1 1 1 1 1 1
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N is the consistent damping 

matrix 

Δ Q in Equation 2.74 is placed in Equation 2.117 as follows: 
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Equation 2.118 is rearranged to solve for Δ q as given below: 
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and K is the element tangent stiffness matrix.  

 Substituting Equation 2.50 into Equation 2.119b, the final form of the equilibrium 

equation is obtained as given below: 
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is the element internal force vector,at j th iteration of ith time step and 
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1
2Q Q Qext

j
extext

j+ = +1
1
2 Δ  is the external load at j + 1th iteration of ith time step 

1
2 1

1
2q q qjj+ = + Δ  is the nodal velocity at j + 1th iteration of ith time step 

1
2 1

1
2q q qjj+ = + Δ  is the nodal acceleration at j + 1th iteration ith time step 

In the mixed finite element method presented in Sections 2.2.2 through 2.2.11, 

determining the nodal forces and displacements of the RCFT beam-column element 

requires the solution of element equilibrium (see Equation 2.50), compatibility (see 

Equation 2.51), and cross-section equilibrium equation (see Equation 2.52), 

simultaneously.  However, all these aforementioned equations are in nonlinear nature in 

terms of their state variables (e.g., q , Q , q , q  etc.).  Therefore, an iterative solution 

scheme should be adopted which requires a linearization process to be performed for the 

available equations (e.g., element equilibrium, compatibility, cross-section equilibrium).  

The cross-section equilibrium equation was stated as the balance between the cross-

sectional forces ( DΣ ) obtained from integration of material stresses over the RCFT cross-

section and the cross-sectional forces ( D ) determined through element flexibility (e.g., 

through multiplying element flexibility with nodal displacements) and force interpolation 

functions.  The only state variable of the cross-section equilibrium was the cross-section 

strain vector ( d ) and the linearization process resulted in an equation relating the 

incremental cross-section strain to the unbalance force between the cross-section forces 

as stated in Equation 2.61.  In the case of compatibility equation, two types of 

linearization process were performed based on the state variables to be varied.  The first 

linearization was conducted considering nodal displacements ( q ) and nodal forces as the 

state variables (Q ).  This condition is often valid at the beginning of an incremental load 

step or Newton-Raphson iteration since the current values of both q and Q  are still 

unknown quantities.  Linearization of the compatibility equation with respect to the state 

variables of q  and Q  produced Equation 2.74.  Equation 2.74 is used in Equation 2.117 

to calculate incremental nodal force values ( Δ Q ) while deriving the expressions for the 

element stiffness matrix.  The use of Equation 2.74 is appropriate while deriving the 

element stiffness matrix since the element stiffness matrix is formed without determining 
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the current values of the states variables of q and Q  at the beginning of an incremental 

step or Newton-Raphson iteration.  The second linearization process for the compatibility 

equation was conducted based on the state variableQ  and Equation 2.77 was obtained 

relating Δ Q to the incremental nodal displacements ( Δ q ).  As it will be described in 

Section 2.2.13, Equation 2.77 will be used while calculating the Δ Q  corresponding to the 

pre-calculated Δ q  values.  The linearization of the equilibrium was carried out with 

respect to the state variables of q , Q , Qext , q , and q .  The final outcome of this 

linearization covered the expressions of element stiffness matrix, consistent mass matrix, 

consistent damping matrix, and internal force vector as can be seen in Equation 2.120.        

2.2.12. Mapping of Element Forces, Displacements, and Stiffness 
between Natural and Global Coordinate Systems 

 
Before proceeding to establish the details of the incremental nonlinear solution 

algorithm, it is critical to address the development of transformations between global ( ~x , 
~y , ~z ), local ( x , y , z ), and natural ( x , y , z ) coordinate systems.  The global 

coordinate system is considered to be fixed in three-dimensional space and the geometry 

of the structure being analyzed is defined within this system.  The equilibrium equation 

of the structure is also developed in the global coordinate system.  A local coordinate 

system is assigned to each finite element.  As the analysis proceeds, the local coordinate 

system follows the motion of the finite element but it is assumed to experience no 

deformation.  The orientations of the natural and local coordinate systems are assumed to 

coincide with each other.  However, in the natural coordinate system, the rigid body 

rotations are eliminated from the element deformations.         

The RCFT beam-column in its natural frame is defined with 13 DOFs as shown in 

Figure 2.4.  In the global (shown with the tilda) and local (shown with the caret) 

coordinates, separate translational DOFs are defined for the steel tube and the concrete 

core.  As given in Figure 2.7, this results in 9 DOFs for each RCFT joint, including 6 

translations and 3 rotations.   
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Figure 2.7 Incremental Element Displacements in Local and Global Coordinates 

The numbering of the DOFs was selected in a manner that allows automatic 

assembly of the global stiffness matrix.  RCFT beam-columns are assumed to be 

connected to the other members (e.g., steel girders) of a frame through the steel tube 

DOFs.  Therefore, the first 3 DOFs were assigned to the steel tube translations, the next 3 

DOF were assigned to the rotations, which are common for both the steel tube and the 

concrete core, and the last 3 DOFs correspond to the concrete core translations.  This 

approach of numbering the DOFs helped using the RCFT beam-column element with 

other structural members without modifying the assembly process. 

2.2.12.1. Transformation of Element Forces 
 
 In Figure 2.8 and Figure 2.9, the positive sign conventions and numbering scheme 

for the natural and local element forces are illustrated, respectively.   
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Figure 2.8 Incremental Element Forces in Natural Coordinates 

 
Using equilibrium equations, the incremental element forces in local coordinates ( 1Qint ) 

can be expressed in natural coordinates ( 1Qint ) as given in Equation 2.120.  
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Equations 2.121c through 2.121j can be consolidated as given in Equation 2.122. 

1 Mzi
s  

1 Mzi
c  

1 Mzj
s  

1 Mzj
c  1 M yi

s  

1 M yi
c  

1 M yj
s  

1 M yj
c  

1 Pi
c  1 Pi

sc  1 Pi
s  1 Pm

c  1 Pm
s  

y 

z 

x 



 
 

68

 1 1Q T Qint int= ×NL
T         [2.122] 

where: 

TNL - transformation matrix of incremental element forces from natural to local 

coordinate system (see Appendix A)  

In the current formulation, the torsional response of RCFT members is assumed to be 

linear.  Therefore, the torsional moments in the local coordinates ( 1T ) are calculated as in 

Equation 2.123.   

 1 1 1( ) ( )T
GJ
Li jx ix= × −θ θ , 1 1 1( ) ( )T

GJ
Lj jx ix= × − +θ θ    [2.123] 

where: 

GJ - torsional stiffness of the RCFT cross-section which is often taken as the 

torsional stiffness of the steel tube (Gourley and Hajjar, 1994) 

1θix - torsional rotation in the local coordinates at i end  

1θiy - torsional rotation in the local coordinates at j end 

A single joint of an RCFT beam-column element is assumed to have 3 steel tube forces, 3 

moment, and 3 concrete core forces.  Each of these forces and moments can be 

decomposed into 3 orthogonal components with respect to the global coordinate system 

as shown in Figure 2.10 for representative force components in the local coordinates.   

The components of unit vectors along the local axes with respect to the global 

coordinate system are designated as (α x , α y , α z ), ( βx , βy , βz ), and (γ x , γ y , γ z ), 

respectively.  These unit vectors are used in the transformation equations of 1 Pi
s , 1Vyi

s , and 

1Vzi
s  to derive their counterparts in the global coordinate system ( 1

~Pi
s , 1

~Vyi
s , and 1

~Vzi
s ). 

 1 1 1 1
~P Pi

s
i
s

iy
s s= × + × + ×α β γx x iz xV V         [2.124] 

1 1 1 1
~V Piy

s
i
s

iy
s

iz
s= × + × + ×α β γy y yV V         [2.125] 

1 1 1 1
~V Piz

s
i
s

iz
s

iz
s= × + × + ×α β γz z zV V         [2.126] 
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Figure 2.9 Incremental Element Forces in Local Coordinates 

 

 
Figure 2.10 RCFT Beam-Column in Three-Dimensional Space 

 

Similar equations can be written while transforming other components of 1Qint  and the 

torsional forces into the global coordinates system so that incremental element forces in 

the global coordinate system ( 1
~Q ) can be derived as given below: 
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1 1
~Q Qint int

tr= ×TLG
T                  [2.127c] 

where: 1 intQ tr  is the incremental element end force vector in the local coordinates with      

             torsion included  
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a a ax
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It should be noted that the transformation matrix TLG is an orthogonal matrix.  Therefore, 

Equation 2.127c can also be expressed as given below: 

 TLG × =1 1
~Q Qint int

tr         [2.128] 

2.2.12.2. Transformation of Element Displacements 
 
 In an incremental nonlinear analysis, the element displacements are first 

calculated in the global coordinates and then transformed into the local coordinate 

system.  A transformation similar to that of incremental element forces is performed 

between local ( 1q ) and global ( 1
~q ) incremental element displacements as given in 

Equation 2.129.  

 1 1
~q T qLG

T= ×          [2.129] 

 or using orthogonality of TLG : 

 1 1
~q T qLG= ×          [2.130] 

Incremental element deformations in the local and natural coordinates are portrayed 

inFigure 2.11.  These two sets of displacements are linked to each other using Equation 

2.131 (Yang and Kuo, 1994). 
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Figure 2.11 Incremental Element Displacements in Natural and Local Coordinates 
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The axial DOFs defined for the mid-node of the finite element in the natural coordinate 

system ( 1em
s , 1em

c ) are eliminated through a static condensation procedure.  Since the 

external loads are assumed to be applied only at the element ends, the mid-node DOFs 

are not used in the local and global coordinates.  However, these DOFs are required while 
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calculating element internal forces and they need to be determined while transforming 

element displacements from local to natural coordinates.  This is achieved by reversing 

the static condensation.  The element stiffness matrix is partitioned in such a way that the 

equilibrium equation in natural coordinate system can be expressed in terms of retained 

( qr ) and eliminated displacements ( qc ) in Equation 2.132. 
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                  [2.132] 

From Equation 2.132, qc  can be solved as given below in Equation 2.133 (McGuire et 

al., 2000). 

 q K Q K K K Qextc cc c cc cr rr r= × − × × ×− − −1 1 1
ext      [2.133] 

where: 

 K - element stiffness in natural coordinate system 

 Q rext - externally applied loads at retained DOFs 

 Q cext - externally applied loads at condensed DOFs 
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zj
c

yj
c s

zi
s

yi
s

zj
s

yj
s

T
θ θ θ θ θ θ θ θ  

1 qc  - [ ]1 1e em
c

m
s T

 
 Q = Q K K Qr ext rext ext− × ×−

rc cc c
1  

 
K = K K K Krr rr − × ×−

rc cc cr
1  

Since external loads are only applied at the element ends, Q cext  can be taken equal to 

zero.  In addition, qr  can be derived as given in Equation 2.134 (McGuire et al., 2000). 

 q K Qextr rr r= ×−1         [2.134] 

Substituting Equation 2.134 into Equation 2.133, the simplified form of qc can be derived 

as follows: 

 q K K qc cc cr r= − × ×−1         [2.135] 

2.2.12.3. Transformation of Element Stiffness Matrices 
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 The element equilibrium in the global coordinates can be also expressed in 

Equation 2.136 as the balance between element forces and externally applied loads.  

Equation 2.136 is equivalent to statement of equilibrium in Equation 2.50 except that it is 

written at the element level in the global coordinates rather than at the cross-section level 

in natural coordinates. 

 g Q Qint= −2 2~ ~
ext          [2.136] 

where: 

 g  is the out-of-balance vector 

The truncated Taylor series expansion of the out-of-balance vector at the current state 

(C2) about the C1 configuration can be derived as given in Equation 2.137. 

 g g
g
q

q2 1= + ×
∂
∂~

~Δ         [2.137] 

where: 

  g2  - out of balance vector at C2 configuration 

 g1    - out of balance vector at C1 configuration 

Δ ~q  - incremental element deformations in the global coordinates between C1 and 

C2 configurations   

Substituting Equation 2.127c and Equation 2.136 into Equation 2.137 and then taking 

derivative with respect to ~q yields Equation 2.138 as given below: 

 g2 1 2
2

= + × × + × × × − ×g
T
q

Q q T
Q
q

q
q

q
Q
q

qint
tr int

tr∂
∂

∂
∂

∂
∂

∂
∂

LG
T

ext
~

~
~

~
~

~
~Δ Δ ΔLG

T
2

 [2.138] 

where: 

 K
Q
q

int
tr

=
∂

∂

2

, TLG =
∂
∂~

q
q

 

After substituting Equation 2.136 into Equation 2.138, Equation 2.139 is obtained as 

follows: 

g2 2= − + × × + × × × − ×1 1
2~ ~

~
~ ~

~

~
~Q Q

T
q

Q q T K T q
Q
q

qint ext int
tr∂

∂
∂

∂
LG
T

LG
extΔ Δ ΔLG

T          

[2.139] 
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Equating Equation 2.139 to zero for equilibrium and solving for Δ ~q , the linearized form 

of equilibrium is obtained in Equation 2.140 given below.  Comparing Equation 2.140 

with Equation 2.120 excluding its dynamic terms (e.g., M q× 1
2    C q× 1

2 ), it can be seen 

that both equations are identical to each other.  However, the former equation is written 

in global coordinate system while the latter equation is expressed in the natural 

coordinate system.  

 ( ~ ) ~ ~ ~∂
∂
T
q

Q T K T q= Q Qint
tr

ext int
LG
T

LG× + × × × −2
LG
T Δ 1

2 1     [2.140] 

The first term on the left hand side of Equation 2.140 represents the external stiffness 

matrix while the second term is the 18×18 global stiffness matrix. 

2.2.12.4. Derivation of External Stiffness Matrix 
 

 Equation 2.136 can be restated in local coordinates as shown in Equation 2.141, 

representing the force balance at C2 between externally applied loads and the element 

internal forces (Gattass and Abel, 1987).   

 

 1 1 1
1( )F + K + K q= Qg l ext× 1          [2.141] 

where: 

K l  - linear stiffness matrix, K g  - geometric stiffness matrix 

Since 1
2Qext  represents a set of forces that are in equilibrium at C2, the left hand side of 

Equation 2.141 must also satisfy equilibrium at the same configuration.  While 

conducting incremental nonlinear analysis, at the beginning of each load step, which is 

often referred as C1 configuration, the components of 1F  is considered to balance each 

other as it is illustrated in Figure 2.12.  However, once the element undergoes a rigid 

body rotation, the nodal forces also rotates with the element (Gattass and Abel, 1987).  

Therefore, the components of 1F can not satisfy equilibrium and their resultant produces 

unbalance force values as can be seen in Figure 2.12 and Figure 2.12.  The resulting 

unbalance forces must be compensated by the second term on the left hand side of 
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Equation 2.140.  Since the terms of 1K ql × 1  represent a set of forces in self equilibrium, 

1K ql × 1  must include force components offsetting the unbalanced forces generated due 

to the rigid body motion of 1F .  The geometric stiffness matrix in local coordinates can 

be decomposed into two parts including internal stiffness matrix ( 1 K gi ) and external 

stiffness matrix ( 1 K ge ) as follows (Gattass and Abel, 1987): 

 1 1 1K K Kg gi ge= +         [2.142] 

1 K gi  is derived based on equilibrium considerations.  Each column of 1 K gi represents the 

reaction forces when a unit displacement is assigned to a single DOF while keeping the 

rest of the DOFs as zero.  Therefore, the components of  1
1K qgi ×  are considered to be in 

self-equilibrium.  On the other hand, in order to satisfy the equilibrium of the finite 

element at C2 configuration, the components of 1
1K qge ×  must contain the nodal forces 

offsetting the unbalanced forces resulting from rigid body rotation of 1F .  The set of 

unbalanced forces illustrated in Figure 2.13d and Figure 2.14d can be transformed into 

the  1
1K qge ×  format and 1 K ge  is derived as given in Appendix A. 

 While performing an iterative solution strategy to solve for element forces and 

displacements, the iterations to satisfy the equilibrium of the analyzed structure are 

conducted at the global level.  This requires transforming the element stiffness ( K ) and 

internal forces (Qint ) derived in Equation 2.120 of Section 2.2.11 from natural to the 

local and from local to global coordinate system.  In addition, to calculate element 

internal forces, the element displacements are transformed from global to local and from  

local to natural coordinate system.  These processes of transformations are conducted 

following the rules developed in Section 2.2.12.   
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Figure 2.12 Element End Forces at C1 Configuration 

2.2.13. Slip and Shear Constraints 
 
 The current RCFT formulation requires imposing relationships between the 

translational DOFs such that the steel tube and the concrete core adhere to compatibility 

of their shear deformations.  In addition, it may also be necessary to provide axial 

deformation compatibility between the steel tube and concrete core.  This condition may 

arise when slip is prevented using shear connectors, multiple RCFT columns frames into  

a joint, the size of the RCFT cross-section changes at a joint or RCFT columns are used 

in a moment resisting frames.  The constraint equations used for RCFT columns are 

given in Equation2.71 to Equation 2.73.  It should be noted that the constraint equations 

given below are defined for a single joint.  Since the steel and concrete interface is 

modeled through a layer of nonlinear springs, assigning a high stiffness and strength 

values to the springs, the constraint equation in the axial direction is ensured without 

introducing any special technique in the equilibrium equations (e.g., penalty function, 

transformation, lagrange multiplier).  

 Δ Δu us c− = 0                    [2.143] 

 Δ v vs c− =Δ 0                     [2.144] 
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 Δ w ws c− =Δ 0                               [2.145] 

In this research, Penalty Function Method is adopted to satisfy the constraint 

conditions between degrees of freedoms (Cook et al., 2002).  Implementing the Penalty 

Function Method requires the knowledge of the global nodes and the unit vectors 

pointing the direction in which the constraints will be imposed.  The directions of shear 

constraints can be obtained from the cross-section vectors of an RCFT joint pointing the 

weak and strong axes.  The unit vector of axial deformation constraint is directed along 

the RCFT member as shown in Figure 2.15. 

The constraint equations defined for RCFT columns can be restated in a vectorial 

form as given below: 

 C q1 0× =Δ ~          [2.146] 

 C q2 0× =Δ ~          [2.147] 

 C q3 0× =Δ ~          [2.148]  

where: [ ]C1 0 0 0= − − −α α α α α αx y z x y z

T
     

 [ ]C2 0 0 0= − − −β β β β β βx y z x y z

T
     

 [ ]C3 0 0 0= − − −γ γ γ γ γ γx y z x y z

T
 

nx = (α x , α y , α z ), ny = ( βx , βy , βz ), and  nz = (γ x , γ y , γ z )  are the vectors 

defining the global constraint directions (see Figure 2.15).  

In the Penalty Function Method of satisfying constraints, a very high stiffness is 

provided between the DOFs imposed to be equal to each other.  The Penalty Function 

equations are introduced to the global equilibrium equation as given below: 

 [ ]K C C C C C C q+ × × + × × + × × × =α α α1 1 2 2 3 3
T T T Δ ~ Δ Qext              [2.149] 

 where:α - penalty function value 
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 Figure 2.13 (a) Resulting forces 2F at C2 with respect to (wrt.) C2 (b) Resulting forces 
2F at C2 wrt. C1 (c) Initial forces 1F at C2 wrt. C1 (d) Forces generated by  Ke  

1θrgz

1
1Pc × θrgz

1
1Ps × θrgz

1 1 1
1

1( ) /V M M Ly
c

zi
c

zj
c= + × θrgz

1 1 1
1

1( ) /V M M Ly
s

zi
c

zj
c= + × θrgz

1 1 1
1

1( ) /V M M Ly
c

zi
c

zj
c= + × θrgz

 
1 1 1

1
1( ) /V M M Ly

s
zi
c

zj
c= + × θrgz

 

1
1Ps × θrgz

1
1Pc × θrgz

1x

1 y  2 x
2 y  

1
1T× θrgz

1θrgz

1T 1Pc 1P s

1 1 1 1( )/V M M Ly
c

zi
c

zj
c= +

1 1 1 1( )/V M M Ly
s

zi
s

zj
s= +

1 1 1 1~ ( )/V M M Ly
c

zi
c

zj
c= +

1 1 1 1~ ( )/V M M Ly
s

zi
s

zj
s= +

1P s  1T  1Pc  
1 Mzi

 

1 Mzj

1 y  
2 x2 y  

1
1T× θrgz

1Pc

1Ps
1T

1Ps  
1Pc  1T  

1 1( )/V M M Ly
c

zi
c

zj
c= +1 1

1 1 1 1( )/V M M Ly
s

zi
s

zj
s= +

1 1 1 1( )/V M M Ly
c

zi
c

zj
c= +  

1 1 1 1( )/V M M Ly
s

zi
s

zj
s= +  

1 Mzi  

1 Mzj  

1 y  2 x2 y  

1θrgz

1x
 

1Pc 1P s

1
1T× θrgz

1
1Pc × θrgz

1
1Ps × θrgz

1 1 1
1

1( ) /V M M Ly
c

zi
c

zj
c= + × θrgz

 
1 1 1

1
1( ) /V M M Ly

s
zi
c

zj
c= + × θrgz

 
1 1 1 1( )/V M M Ly

c
zi
c

zj
c= +

1 1 1 1( )/V M M Ly
s

zi
s

zj
s= +

1 1 1 1( )/V M M Ly
c

zi
c

zj
c= +

1 1 1 1( )/V M M Ly
s

zi
s

zj
s= +

1P s  1T  

1 1 1
1

1( ) /V M M Ly
c

zi
c

zj
c= + × θrgz

 

1 1 1
1

1( ) /V M M Ly
s

zi
c

zj
c= + × θrgz

 

1
1T× θrgz

 

1
1Ps × θrgz

1Pc

1θrgz

1T

1
1Pc × θrgz

1 Mzi
 

1 Mzj

2 x

1x

1 y  
2 y  

(a) 

(b)

(c) 

(d) 

1x



 
 

79

Figure 2.14 (a) Resulting forces 2 F at C2 with respect to (wrt.) C2 (b) Resulting forces 
2 F at C2 wrt. C1 (c) Initial forces 1F at C2 wrt. C1 (d) Forces generated by  Ke  
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Figure 2.15 Global Constraint Directions for an RCFT joint 

 
 In the Penalty Function Method of satisfying constraints, a very high stiffness is 

provided between the DOFs imposed to be equal to each other.  The Penalty Function 

equations are introduced to the global equilibrium equation as given below: 

 [ ]K C C C C C C q+ × × + × × + × × × =α α α1 1 2 2 3 3
T T T Δ ~ Δ Qext   [2.150] 

 where:α - penalty function value 

The main advantage of Penalty Function Method is that the number of equations 

remains unchanged.  As illustrated in Equation 2.149, it is easy to incorporate in a 

nonlinear analysis program with minimal changes in the global equilibrium equation 

(Schiller and Hajjar, 1998).  The penalty function method becomes more accurate as the 

value of α  gets larger.  If α  is given very high values, it is possible to have numerical 

difficulties.  Bathe (1994) recommends having anα  value of 100 to 1000 times the 

largest diagonal term in the global stiffness matrix.   

 While performing geometrically nonlinear analysis, it is required to update the 

constraint equations to account for the changes in the geometry of the structure (Schiller 

and Hajjar, 1998).  The transformation of the constraint directions is conducted as given 

below: 

 2 1n T n= ×n          [2.151] 

where: Tn is the C1 to C2 transformation matrix for constraint directions 

i

j α  

β

γ

RCFT beam-column 

~y  

~x  

~z  
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 1n is the unit vector in the constraint direction in configuration C1 

 2n is the unit vector in the constraint direction in configuration C2 

 Δ ~θx , Δ ~θy , Δ ~θz  are the incremental rotations in the global coordinates 
In an iterative nonlinear solution algorithm for a structure, Equation 2.150 is 

utilized while assembling the global stiffness matrix of the analyzed structure.  The 

stiffness matrix derived in Equation 2.120 of Section 2.2.11 is transformed to the local 

from natural and then it is transformed to the global from local coordinate system as 

documented in Section 2.2.12.  The global stiffness matrices of the elements are 

assembled together with the Penalty Function equations as given in Equation 2.150 to 

form the structural stiffness matrix.  At the beginning of each local step and Newton-

Raphson iteration, the transformation matrix in Equation 2.151 is used to update the 

constraint directions. 

2.2.14. Element Force Recovery 
 

Incremental nonlinear analysis starts with the solution of structural displacements 

corresponding to the external load increment in global coordinates.  This stage is also 

called as the predictor phase of nonlinear analysis (Yang and Leu, 1991).  The structural 

displacements in global coordinates are then transformed to the natural coordinates to 

determine element deformations.  The force recovery stage (also called state 

determination, or the corrector phase) involves the processes to calculate element forces 

from element deformations.  The accuracy of the analysis results is often governed by the 

force recovery stage (Yang and Leu, 1991).  Having two primary sets of unknowns 

(displacements and forces), the mixed-finite element formulation often has a more 
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elaborate force recovery procedure compared to displacement-based and force-based 

solutions.  In this section, the steps of the force recovery stage for the RCFT beam-

column element are summarized.  

 All force recovery calculations are performed in the corotational coordinate 

system.  The integrations are carried out numerically based on a Gaussian-Lobatto 

numerical integration scheme.  In this integration scheme, the location of integration 

points along the element length and the associated weighting parameters (W ) per 

integration point are selected in a manner that element ends points are included in the 

integration.  As the force and deformation values at the element ends are often the largest 

within the element (e.g., for cases of reverse curvature flexure), this approach enables the 

values at the end cross sections to be monitored directly throughout the analysis.  It is 

assumed that the calculations are assumed to be performed while the analysis is 

proceeding from the j th to j + 1th iteration of the i th load step for static analysis or i th 

time step for dynamic analysis. 

The first step of force recovery is to obtain the incremental element deformations 

( Δ q j+1 ) in natural coordinates using the transformations described in Section 2.2.12.  The 

total element deformations with respect to the C1 configuration (beginning of step) at C2 

configuration ( 1
2 1q j+ ) and incremental element deformation with respect to the C1 

configuration ( 1
1q j+ ) are then updated.  Interpolating the deformations along the element 

length using Equation 2.12a, the incremental strain and curvatures at each integration 

point ( 1
1d k

j+ ) are evaluated based on the kinematic assumptions in Equations 2.1a, 2.3, 

2.4, and 2.7 as summarized in Equation A.10 in Appendix A and as illustrated in Figure 

2.16. 

Following the calculation of 1
1d k

j+  , a clear distinction between displacement-

based, force, and mixed finite element formulations can be noticed.  Since a 

displacement-based finite element formulation is a strain driven formulation, the cross-

section forces are directly calculated based on first using 1
1d k

j+  in the constitutive 

relations to obtain stresses and cross section forces.  The cross-section forces at the 
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integration points are then integrated through the element length to obtain nodal forces.  

The Newton-Raphson iterations for a load step or time step are performed based on the 

unbalanced load values.  On the other hand, in force-based formulations, the element 

internal forces are calculated directly by multiplying the element stiffness by the nodal 

displacements.  Since no displacement interpolations are employed, 1
1d k

j+  is not 

calculated. The Newton-Raphson iterations are then conducted for the residual 

displacements. 

 
Figure 2.16 Flow Chart of Curvature and Strain Calculations at the Integration Points 

 
In the mixed finite element method, the element nodal forces and displacements 

are related to each other through the linearized form of the compatibility equation (see 

Equation 2.77), which is derived as a function of 1
1d k

j+  and d k
j+1 .  The cross-sectional 

forces are obtained through interpolating the nodal forces along the element length (see 

Equation 2.14 and Equation A.6 in Appendix A) and they are compared with the cross-

section forces obtained through integrating the stresses of the material fibers over the 

cross-section.  These two sets of cross-section forces need to balance each other in order 

to ensure equilibrium at the cross-section level.  In the mixed finite element formulation 

adopted in this research, iterations are only performed at the global level.  The unbalances 

of the compatibility and cross-section equilibrium equations are converted into 

unbalanced nodal forces and they are eliminated together with the unbalanced nodal 

forces generated from element equilibrium at the global coordinate system.  This 

approach was found to exhibit good convergence characteristics, especially, for problems 

with significant concrete cracking (e.g., pure bending) causing drastic changes in the 

- Obtain Δ q j+1  from Δ q j+1 using Equation 2.131 

- Update 1
2q j+1  ( )1

2
1
2 1q q qj j+ += +1 Δ j  

         1q j+1  ( )1 1
1q q qj j+ += +1 Δ j  

 
- for ( k = 1; k ≤ Number of Sections )  

- Obtain 1
1d k

j+  ( )( )1
1 1d N qk

j+ = × +
d

j

k 1   

(see Equation A.10 in Appendix A for N d )
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concrete terms of the cross-section stiffness matrix.  However, it is also possible to 

eliminate the unbalances of compatibility and cross-section equilibrium iteratively 

without transferring them to the global level (Alemdar and White, 2005). 

Figure 2.17 portrays the details of calculating incremental nodal forces.  In Figure 

2.17, Equation 2.51 is utilized to compute the compatibility equation (V j ) producing a 

residual displacement vector if there exist an unbalance between cross-sectional strain 

vectors of 1d j+
k

1  and 1 d k
j .  It should be noted that the additional term 1

2
1
2

1
2f D Dk

j
k
j

k
j× −( )Σ  while 

calculating V j  in Figure 2.17 accounts for the unbalance of the cross-section equilibrium 

in the previous iteration which is converted to strain values transferred to the unbalance 

of the compatibility equation.  The 1
2H11

j  matrix, which can be considered as the element 

flexibility is obtained through Equation 2.73.  Both V j  and 1
2H11

j  are calculated using 

numerical integration along the element length as described in Figure 2.17.  As it is also 

shown in Equation 2.77, incremental nodal forces ( Δ Q j+1 ), defined in Equation 2.13, are 

determined multiplying V j and 1
2H11

j .   

 
Figure 2.17 Flow Chart of Calculating Nodal Forces 

- Evaluate incremental element forces 
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- Update element nodal forces  
         1

2 1Q Q Qj j+ += +1
1
2 Δ j   
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As described in Figure 2.18, after the calculation of nodal forces, the force 

recovery of mixed finite element formulation proceeds with the interpolation of nodal 

forces along the element length using Equation 2.14.  This process produces cross-section 

forces ( 1
2 1Dk

j+ ) at each integration point along the element length.  The equilibrium at the 

integration points is checked by comparing the cross-section force vectors from force 

interpolation functions ( 1
2 1Dk

j+ ) with the cross-section force vectors obtained through 

numerical integration over the steel and concrete fibers ( ( )
1

2
D

k

j

Σ ).  The resulting out-of-

balance cross-section force vector is multiplied by the cross-section flexibility ( 1
2 1fk

j+  or 

( )
1

2 1kk
j+ −1

) to obtain the corresponding incremental cross-section deformations ( 1
1d k

j+ ).  

However, in order to ensure the curvatures of the steel tube and concrete core to be the 

same, the cross-section stiffness is modified by combining the flexural terms of the steel 

tube and concrete core yielding ( )
1

2
f comb

k

j+1
as shown in Figure 2.18.  The similar process 

of combining the flexural terms is also performed for the cross-sectional forces of 

( )
1

2
D

k

j

Σ  and 1
2 1Dk

j+  producing, ( )
1

2 1
Dcomb j+

Σ k
 and ( )1

2 1
Dcomb j+

k
, respectively, as they are 

defined in Figure 2.18.  The cross-section equilibrium equation is expressed as the 

difference between ( )
1

2
Dcomb j

Σ k
 and ( )1

2 1
Dcomb j+

k
.  Therefore, ( )1

1
d comb

k

j+
 is obtained by 

multiplying the unbalance of cross-section equilibrium (e.g. ( )1

2 1
Dcomb j+

k
- ( )

1

2
Dcomb j

Σ k
) 

by ( )1 1
f comb

k

j+
.  The resulting cross-section strain vector ( ( )1

1
d comb

k

j+
) contains two 

independent axial strain values for the steel tube ( ( )1

1
ε s

k

j+
) and the concrete core 

( ( )1

1
ε c

k

j+
) and two curvature values ( ( )

1

1
κ y

comb

k

j+
, ( )

1

1
κ z

comb
k

j+
) with respect to the two axes 

of bending, both of which are defined commonly for the steel tube and concrete core.  

The strain values of ( )1

1
d comb

k

j+
including both curvatures and axial strains are mapped on 

to 1
1d k

j+ as it is presented in Figure 2.18.  
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Figure 2.18 Flow Chart of Calculating Cross-Section Deformations 

- Evaluate the cross-section forces at each integration point 
    for ( k = 1; k ≤ Number of Sections ) 
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- Evaluate the cross-section deformations ( )1

1
d comb

k

j+
 at each integration point 

     for ( k = 1; k ≤ Number of Sections ) 
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- Evaluate cross-section deformations 1 d k
j+1  at each integration point 

       for ( k = 1; k ≤ Number of Sections ) 
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At each integration point, the constitutive relations for the steel (σn
s ) and concrete 

(σn
c ) fibers are updated based on the values of 1

1d k
j+ .  Performing numerical integration, 

an updated cross-sectional stiffness ( 1
2 1kk

j+ ) and cross-section force values ( ( )
1

2
DΣ k

j+1
) are 

obtained as summarized in Figure 2.19.  The kinematic equation presented in Equation 

2.9 for interpolated slip deformation ( 1
1d k

j
sc

+ ) and the slip deformation from nodal 

displacements in Equation 131a ( 1ei
sc ) is utilized to calculate the incremental slip with 

respect to C1 configuration ( 1εk
sc = 1

1d k
j

sc
+ - 1ei

sc ) at each integration point.  The stiffness of 

the interface between the steel tube and concrete ( ( )
1

2
k

k

j

sc

+1
) is updated once the slip 

constitutive relation (σ sc ) is incremented based on 1εk
sc .  

The updated values of cross-sectional forces stiffnesses (e.g., 1
2 1kk

j+ , ( )
1

2
k

k

j

sc

+1
) 

and strains (e.g., 1
1d k

j+ , 1d j+
k

1 ) are used to determine the element internal forces ( 1
2Qint

j+1) 

derived in Equation 2.120 as described in Figure 2.20 and Figure 2.21.  The first term in 

Equation 2.120 defined as ( )
1

2

1
1

1
2 1G Qj+ j+T

×  is obtained multiplying ( )
1

2

1
1G j+ T

(see 

Equation 2.73) by 1
2Q j+1described in Figure 2.17.  The term 1

2 1Ksc
j+  representing the slip 

stiffness of the RCFT beam column element is determined through numerical integration 

along the element length (see Equation 2.83) and it is used to obtain the incremental force 

at the steel tube and concrete core interface.  Similarly, the term  ( ) ( )
1 1 1N D

δd k k

j

sc

T
sc

I

d I× ×
+

∫
1

1

 

defining the force at the steel tube and concrete core interface in C1 configuration is also 

evaluated through numerical integration along the element length.  For each integration 

point, ( )1

N
δd ksc

T is calculated as defined in Equation A.13 in Appendix A and  ( )1
Dsc k

j+1
 

representing the stress at the steel and concrete interface in C1 configuration is obtained 

as it is stored at the last iteration of the previous load step (or time step). The numerical 

integration of the term
1
2N d dD

T
L

d x2 1 1
1

0

1

× − ×∫ ( )  is carried out following the calculation of 
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( )
1

2
N D

j
k2

1+ and ( )1 1d dj+ j+
k k

1 1−  for each integration point. ( )
1

2
N D

j
k2

1+  is obtained using the 

Equation A.15 in Appendix A, 1d j+
k

1 and 1d j+
k

1 are determined from the previous steps of 

the force recovery given in Figure 2.16 and Figure 2.18.  The term Md which is derived 

through linearization process of the compatibility equation is obtained using Equation 

A.19 in Appendix A and it accounts for the P − δ effects.  The terms ( )
1

2 1
H11

j+
and  

( )
1

2
H12

1j+
 described in Equation 2.73 are calculated through numerical integration along 

the element length.  The compatibility equation (V j+1 ) with the updated values of the 

cross-sectional terms (e.g., 1d j+
k

1 , 1d j+
k

1 ) is calculated as described in Equation  2.51.   

 

- At each integration point evaluate 1
2 1kk

j+ , ( )
1

2
k

k

j

sc

+1
, ( )

1

2
DΣ k

j+1
 

 
for ( k = 1; k ≤ Number of Sections ) 
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   where:σ c is the constitutive relation for concrete core 
     σ s is the constitutive relation for steel tube 
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   where:σ sc is the constitutive relation for steel tube and concrete interface 

1
1εsc

j+  is the incremental slip at the steel tube and concrete interface with respect to 
C1 configuration
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Figure 2.19 Flow Chart of Updating Constitutive Relations and Integrating over the 

RCFT Cross-Section for Stiffness and Force Calculations 

 
Figure 2.20 Flow Chart of Calculating Element Internal Force 

 

- Get 1
2Q j+1as calculated in Figure 2.17 

- Evaluate 1
2

1
1G j+ using Equation 2.73 

( ) ( )1
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- Evaluate ( )
1

2

1
1

1
2 1G Qj+ j+T

×  

- Evaluate 1
2 1Ksc

j+  using Equation 2.83 

( ) ( ) ( )1
2 1

1

1

2 1 1
K N Nsc

k

Number of Sections
T

scL k
sc sc

= × × × ×
=

+ + +

∑ Wk d k

j

k

j

d k

j

1

1 1

δ δ
 

- Evaluate ( ) ( )
1 1 1N D

δd k k

j

sc

T
sc

I

d I× ×
+

∫
1

1
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d I L W
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(see Equation A13 in Appendix A for ( )1

N
δd ksc

T  ) 

- Evaluate
1
2N d dD

T
L

d x2 1 1
1

0

1

× − ×∫ ( )  using Equation A.15 in Appendix A 

for ( k = 1; k ≤ Number of Sections ) 
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- Evaluate 1Md as given in Equation A.22 in Appendix A 

- Evaluate ( )
1

2 1
H11

j+
 and ( )

1

2
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1j+
 using Equation 2.73 
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Figure 2.21 Flow Chart of Calculating Element Internal Force (cont’d) 

 

The additional term 1
2 1

1
2 1

1
2 1f D Dk

j+
k
j

k
j× −+ +( )Σ  in Figure 2.21 while evaluating V j+1 account for 

the unbalances of the cross-section equilibrium equation (e.g., 1
2 1

1
2 1D Dk

j
k
j+ +− Σ ), which is 

converted into cross-section strains and transferred to the compatibility equation.  Finally, 

the force recovery is completed calculating the internal nodal forces using Equation 

2.120.  While evaluating 1
2

int
1Q j+  in Figure 2.21, the terms ( )1

2 1 1 1N d dD
T

L

d x2 1 1
0

1

j j j+ + +× − ×∫ ( ) 1  and 

( ) ( ) ( )( ) ( )
1

2 1 1

1

2 1 1G M H H V1

1

1

2

12 11
1T

d
T j T jj j j+ + + − + ++ − × ×  represent the unbalances of compatibility and 

cross-section equilibrium equations converted into unbalanced nodal forces.  

2.2.15. Element Stiffness Calculation 
 

The stiffness of the RCFT beam-column element is calculated at the beginning of 

every iteration and time step in an incremental nonlinear analysis to determine the 

structural displacements.  Due to the changes in the structural geometry, element forces 

and stiffnesses, the terms of the stiffness matrix are continually updated throughout the 

analysis.   

A summary of the computations to obtain the stiffness matrix of the RCFT beam-

column element is illustrated in Figure 2.18 as the analysis is proceeding from j th 

iteration to the j + 1th iteration of the i th load step (or time step). 

- Evaluate V j+1 using Equation 2.29 
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- Evaluate 

1
2Qint

i+1  as in Equation 2.120 using the term described above. 
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In Figure 2.22, the geometric stiffness matrix ( 1
2 K g

j ) accounting for the P − Δ  effects is 

evaluated through numerical integration using Equation A.22 in Appendix A.  Integrating 

Equation 2.83 along the element length, the slip stiffness matrix ( 1
2 Ksc

j ) of the RCFT 

beam-column element is calculated.  The terms 1
2G j

2 , ( )
1

2
G j

2

T
, and 1

2H j
22 are derived to 

include the P − δ effects in the RCFT beam-column stiffness matrix.  The 

aforementioned terms are evaluated by performing the numerical integrations in 

Equations 2.73 and 2.91.  Similarly, the terms 1
2H j

12  and Md
j  also reflects the P − δ  

effects in the formulation of stiffness matrix of the RCFT beam-column element.  

Equation 2.73 and Equation A.22 in Appendix A are utilized while evaluating the terms 

1
2H j

12  and Md
j , respectively.  The ( )

1

2 1
H11

j+
representing the element flexibility matrix is 

obtained as described in Equation 2.73 evaluating the numerical integration along the 

element length.  The evaluation of the stiffness matrix ( 1
2 K j ) is accomplished through 

substitution of the numerical values of the terms including 1
2 K g

j , 1
2 Ksc

j , 1
2G j

2 , ( )
1

2
G j

2

T
, 

1
2H j

22 , 1
2H j

12 , Md
j , and ( )

1

2 1
H11

j+
into Equation 2.119a. 

 
2.3. Three-Dimensional Distributed Plasticity STL Beam-

Column Element 
 
 A 12 DOF steel beam-column element was also derived following the mixed 

finite element principles described in Section 2.2.  Independent interpolation functions 

were utilized for the displacement and force fields along the element length.  Cubic 

Hermitian shape functions were defined for the transverse deformations while a constant 

shape function was introduced for the axial deformations.  The element internal forces 

were estimated through constant shape function for the axial load and linear shape 

functions for the bending moments.  The kinematic equations adopted for the axial strains 

and curvatures were kept the same as defined for the RCFT beam-column element.  The 

element internal forces and stiffness matrices were also obtained utilizing the same 

methodology derived for the RCFT beam-column element as detailed in Section 2.2.   
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Figure 2.22 Flow Chart of Calculating Element Stiffness 
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Chapter 3  
 

3. Uniaxial Cyclic Concrete Constitutive Model 
for RCFT Members  

 
3.1. Introduction 
 

 The load transfer mechanism of RCFT members allows the shedding of force 

between the steel tube and concrete core through the interface of the two media.  This 

distinct feature of RCFT members allows the contribution of both the steel tube and 

concrete core while resisting externally applied loads.  In Chapter 2, a fiber-based finite 

element formulation is presented, which is appropriate to simulate the load-transfer 

characteristics of RCFT members in a rational way.  However, in order to model their 

nonlinear response accurately, the fiber-based finite element formulation should be 

implemented along with comprehensive constitutive models to trace the stress vs. strain 

response of the material fibers.  In this chapter, the cyclic uniaxial stress vs. strain 

relation adopted for the concrete core is introduced.  Both the advantages and limitations 

of the model are discussed.  Several verification studies are presented to demonstrate the 

performance of the model. 

In the literature, there exist numerous research studies focusing on the stress-

strain response of concrete that are relevant to the response within RCFTs, including 

Chen and Chen (1975), Sheikh and Uzumeri (1982), Mander et al. (1988), Collins and 

Mitchell (1990), Saatcioglu and Razvi (1992), Chang and Mander (1994), Amer-Moussa 

and Buyukozturk (1990), Cusson and Paultre (1995), Attard and Setunge (1996), Lee and 

Fenves (1998), Palermo and Vecchio (2003), Grassl and Jirasek (2006).  The majority of 

these studies cover specifically reinforced concrete structures.  There are mainly two 

approaches to develop the stress-strain relationship of concrete.  In the first method, the 

classical theory of plasticity is employed to simulate the multiaxial cyclic behavior of 

concrete (Chen and Chen, 1975).  Assuming concrete as a homogeneous media and 

neglecting its microscopic character (e.g., interactions between aggregates and mortar), 
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the stress and strain tensors are related to each other incrementally.  An initial yield 

surface (loading surface) is introduced to define the boundary between elastic and plastic 

deformations.  The evolution of the loading surface during the loading history is 

described through a hardening rule.  In order to obtain the incremental plastic strain, a 

flow rule is defined with either associative or non-associative nature.  In addition, the 

concept of failure surface in the stress space (e.g., principle stresses) is adopted to detect 

the ultimate strength of concrete.  The failure state (e.g., crushing, fracture) is assumed to 

be reached once the stress state of the material breaches the failure surface.  The 

mathematical representation of the failure surface is critical since it is the failure criteria 

that determines the basis of concrete constitutive relations (Chen and Han, 1988).  

Despite the successful application of plasticity-based models, difficulties in capturing the 

salient features of concrete are not uncommon.  For example, the strain softening 

response (e.g., strength degradation following an increase in strain), stiffness degradation, 

and energy dissipation during load cycles are not represented satisfactorily (Ameur-

Moussa and Buyukozturk, 1990; Lee and Fenves, 1998).  Therefore, the plasticity-based 

concrete constitutive models are often augmented with damage models.  In the concrete 

model by Ameur-Moussa and Buyukozturk (1990), a bounding surface, usually 

coinciding with the failure surface, is introduced enclosing all the attainable stress states.  

The material damage accumulating during the loading (e.g., microcracking, tensile 

cracking, crushing, fracture) is represented through reducing the size of bounding surface 

isotropically.  Lee and Fenves (1998) derived a scalar fracture-energy-based parameter to 

quantify the damage states of the material.  The alternative way to the plasticity-based 

concrete models and their counterpart models with damage simulations is to develop 

uniaxial formulations so that the multiaxial stress conditions can be accounted for 

implicitly.  This is often achieved through generating a family of curves defined by 

polynomial equations, where stress values can be obtained for a given strain history 

(Sheikh and Uzumeri 1982, Mander et al. 1988, Collins and Mitchell 1990, Saatcioglu 

and Razvi 1992, Chang and Mander 1994, Cusson and Paultre 1995, Attard and Setunge 

1996, Palermo and Vecchio 2003).  The advantage of this approach is its simplicity 

avoiding the complexities existing in the plasticity-based models.  In this work, the 
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monotonic and cyclic stress vs. strain response of the concrete core of RCFT members is 

simulated via deriving a set of empirical nonlinear curves calibrated with respect to the 

experimental studies available in the literature.  

 
3.2. Monotonic Compressive Response 
 
 In this section, the behavior of concrete inside short RCFT columns under 

uniform compression is discussed.  The test results conducted on RCFT columns are 

examined and the reported data is utilized to derive a uniaxial constitutive equation under 

monotonically applied loadings. 

When RCFT members are subjected to compressive strains, both the steel tube 

and the concrete core experience a lateral expansion.  In the early stages of loading, the 

Poisson’s ratio of the concrete core is less than that of the steel tube.  However, as the 

loading proceeds, due to micro-cracking, the rate of the lateral expansion of the concrete 

core becomes larger than that of the steel tube.  A radial interaction between the two 

media develops such that the steel tube restraints the concrete core to expand laterally.  

This interaction yields a confinement pressure acting on the concrete core, which puts the 

concrete core into a three-dimensional stress state and generates hoop stresses on the steel 

tube.  The arching action, the trajectories of the confinement pressure, occurs between the 

corners of the tube and extends uniformly throughout the length of the columns under 

axial compression.  The confinement effect improves the ductility of concrete.  

Nevertheless, it is usually not possible to see any significant enhancement in concrete 

strength since the confinement effect is restricted within the corner regions (Bridge, 1976, 

Inai and Sakino, 1996).  Reinforced concrete sections with rectangular hoops also exhibit 

a similar type of confinement despite the fact that there exist some differences.  In 

reinforced concrete sections, improvement in compressive strength of concrete due to 

confinement is not negligible and it is accounted for in many of the confined concrete 

models (Sheikh and Uzumeri, 1982, Mander et al., 1988).  The steel tubes in RCFT 

members carry longitudinal stresses and lateral stresses at the same time while the 

rectangular hoops in reinforced concrete sections are subjected to longitudinal stresses 

alone.  Therefore, the efficiency of confinement in RCFT members is relatively lower 
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than the reinforced concrete sections and it is not appropriate to apply reinforced concrete 

models directly for RCFT members (Zhang and Shahrooz, 1997). 

 The effect of confinement on the concrete core primarily depends on the lateral 

pressure (σ r ) provided by the transverse reinforcement.  Several formulations have been 

proposed in the literature to calculate σ r  as summarized in Table 3-1 for both reinforced-

concrete (RC) and RCFT cross-sections. 

Table 3-1 Summary of Concrete Lateral Confinement Models (SI units) 

  

In all of the equations in Table 3.1, except the ones for RC sections, the lateral 

confinement stress is proportional to the volumetric ratio ( ρs ) and yield strength ( f yr ) of 

the lateral reinforcement.  The parameter ke  represents the effectiveness of confinement 

and it is developed as a function of the lay-out of the reinforcement.  The formulations to 

calculate ke  exhibit a variation among the concrete models documented in the literature.  

In the case of RCFT members, the parameters of ρs  and f y  can be considered as 

equivalent to the depth over thickness ratio ( D t/ ) and yield strength of the steel tube 

( f y ), respectively.  The parameter ke  of the RCFT members can be considered as unity 

Section Type Model Confining Pressure (σ r ) 

RC Mander et al. (1988) σ ρr e s yrk f= × ×  

RC 
Saatcioglu and Razvi 

(1992) 
σ ρr e s yrk f= × ×  

RC Cusson and Paultre (1993) σ ρr e s yrk f= × ×  

RCFT 
Nakahara and Sakino 

(1998) 
σ ρr s yf

t
D

= × × ×
1
2

 

RCFT Susantha et al. (2001) 
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since the configuration of the steel tube at the perimeter of the concrete core remains 

constant.  In Table 3.1, only the equation proposed by Susanta et al. (2001) takes into 

account the effect of compressive strength of concrete ( f c
' ) on the lateral confinement 

pressure.  This approach is valid since the passive confinement observed in RCFT 

members is triggered by the expansion of the concrete core and the amount of expansion 

depends on the strength of the concrete core.  In the Equations of Table 3.1 defined for 

RCFT sections, the confinement pressure is calculated as a function of f y .  This implies 

that the lateral reinforcement is assumed to yield at the maximum strength of the concrete 

core.  Prior to reaching its maximum strength, normal strength concrete can develop 

strain levels allowing the steel tube to yield.  On the other hand, it is possible that high 

strength concrete, due to its brittle nature, may not generate strain levels for the steel tube 

to start yielding.  However, Cusson and Paultre (1995) and Claeson (1999) report that if 

the column section is well confined, even for high strength concrete, the transverse 

reinforcement reaches its yield strain at the compressive strength of the confined 

concrete.  As RCFT members can be considered as well confined sections, the yield 

strength of the tube steel can be used as a parameter while quantifying the confinement 

pressure assuming yielding initiated before the concrete core attained its peak strength.  

Tort and Hajjar (2003) also found that yielding of the steel tube for RCFT members 

commonly takes place prior to reaching the peak load level, which often corresponds to a 

load level before crushing of the concrete core takes place.  The confinement in RCFT 

members mainly influences the strain softening region of the concrete core.  Therefore, in 

this region of the concrete constitutive model, the effects of the parameters D t/ , f y , and 

f c'  should be accounted for.   

 In many well developed confined concrete models in the literature (e.g., Park et 

al. 1972; Saatcioglu and Razvi, 1990), the stress-strain curve of confined concrete is 

made up of three sections including an ascending part up to the peak stress, a descending 

region and a constant stress region.  It is possible to see a similar type of load-

deformation response in axial load tests of RCFT columns, which can often be attributed 
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to the response of concrete core, especially for members with compact steel tubes 

experiencing no local buckling (Schneider, 1998; Nakahara et al., 1998; Varma 2000). 

 As described above, the proposed stress-strain curve for monotonic response has 

the shape and parameters given in Figure 3.1.  The key parameters of the stress-strain 

curve given in Figure 3.1 are the compressive strength of concrete ( f c
' ), strain at peak 

strength (εco ), slope of the descending region ( Kc ), and the stress level at the constant 

stress region ( f rc ).  In addition, the elastic modulus of concrete ( Ec ) is also required in 

order to construct the stress-strain curve. 

Furlong (1967) reported that the tube steel and the concrete core resisted the 

applied loading independent of from each other, without any significant interaction, until 

the peak load.  This shows that the concrete core confined in RCFTs behaves as plain 

concrete until its peak strength.  Inai and Sakino (1996) also noted this behavior and 

treated the confined concrete as plain concrete until its peak strength is reached.  

Therefore, the ascending part of the proposed stress-strain diagram should represent the 

behavior of plain concrete, with microcracking leading to a gradual reduction of modulus 

until the peak stress is attained.  A linear strength degradation response is assumed to take 

place following the attainment of the peak concrete strength.  The effect of confinement 

displays itself in the form of enhancement in ductility providing a milder strength 

degradation slope.  In the tests of concrete filled tube stub columns, it is observed that a 

residual strength is always preserved even after failure, and this behavior of RCFTs is 

simulated in the stress-strain behavior of concrete by f rc  (Nakahara et al., 1998). 

Gourley and Hajjar (1994) adopted the model by Collins and Mitchell (1990) for 

RCFT beam-column members and obtained good correlations with the experiments.  The 

concrete model by Collins and Mitchell (1990) was compared with that of Chang and 

Mander (1994) and no significant deviation was obtained between the results in the pre-

peak response.  The formulation of the concrete model recommended by Chang and 

Mander (1994) is presented in Equations 3.1 through 3.5. 
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Figure 3.1 Concrete Stress-Strain Curve under Compression 
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 The first parameter in defining the post-peak response of the concrete is the slope 

of the descending branch ( Kc ) shown in Figure 3.1.  The equation defining the 

descending slope of concrete was derived from the computational work based on axially 

loaded stub column tests by Varma (2000).  In addition, the results from axially loaded 

RCFT tests by Sakino and Yuping (1994) were utilized.  Varma (2000) developed 3D 

finite element models of RCFT columns accounting for the interaction between steel tube 
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f’c 
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and concrete core.  The finite element models estimated the experimental load-

deformation response of the axially loaded column specimens with adequate accuracy.  

The finite element analysis results provided the data for the stress-strain response of the 

concrete core inside the steel tube.  On the other hand, Sakino and Yuping (1994) 

reported experimentally obtained stress-strain data of concrete core from their 

experimental tests on RCFT columns.  Table 3-2 summarizes the material and geometric 

properties of the specimens which provide the stress-strain data of concrete core. 

Varma et al. (2000) investigated specimens all having 110 MPa concrete strength.  

Sakino and Yuping (1994) provided the test data of three groups of specimens having 

low, medium and high strength concrete with average f c
'  values of 24 MPa, 44 MPa, and 

65 MPa, respectively.  Therefore, the specimens from Varma et al. (2000) and Sakino and 

Yuping (1994) can be examined in a total number of four different groups based on the 

concrete strength.  Within each group, the softening slope of the concrete core ( Kc ) was 

correlated to the parameter R
D
t

f
E

f
f

y

s

c

y
= × ×

'

 using linear regression as summarized in .  

The parameter R
D
t

f
E

f
f

y

s

c

y
= × ×

'

 was adopted from Susanta et al. (2001), where 

D
t

f
E

y

s
× represents the slenderness of the steel tube and f

f
c

y

'
is related to the effect of 

concrete strength in the confinement pressure. 

According to Figure 3.2 , for all concrete ranges, Kc  increases when R gets larger.  

It is also evident from Figure 3.2 that the slope of the linear curves relating R to Kc  gets 

larger as concrete strength increases.  Therefore, if all the data presented in Figure 3.2 is 

plotted on the same graph after normalizing Kc  by f c
' , a linear trend of  

K
f

c

c
'  with respect 

to R can be obtained as shown in Figure 3.3.  A linear curve fit is performed to the data 

available in Figure 3.3 and Equation 3.4 is obtained to estimate Kc with an R2  of 0.73.   

K R f fc c c= × × − ×332 75 9 60. .' '           [3.4] 
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As it is presented in the stress-strain curve of Figure 3.1, the concrete exhibits a 

constant stress region at very high strain levels due to the high level of confinement in 

RCFTs.  The residual strength of the concrete core ( f rc ) is also determined using the 

computational results by Varma (2000) and experimental results by Sakino and Yuping 

(1994).  The available data for f rc  is shown in Figure 3.4.  It was found that f rc  exhibits 

a decreasing trend for large values of R.  A non-linear regression was performed and 

Equation 3.5 was derived to estimate f rc  with an R2 of 0.68. 

5.032.0
'

−×= R
f
f

c

rc             [3.5] 

Table 3-2 Summary of Specimens for Concrete Stress-Strain Data1 
 

Reference Type of 
Data 

Specimen 
ID 

D 
(mm) 

t 
(mm) 

D/t f’c 
(MPa) 

fy 
(MPa) 

Es 
(MPa) 

SC32-80 305 8.89 34.3 110.0 560.0 197000 

SC48-80 305 6.10 50.0 110.0 660.0 194000 

SC32-46 305 8.64 35.3 110.0 257.0 197000 

V
ar

m
a 

(2
00

0)
 

C
om

pu
ta

tio
na

l 

SC48-46 305 5.84 52.2 110.0 473.0 204000 

na 175 5.65 31.0 25.2 388.5 200000 

na 175 2.92 60.0 24.9 315.9 200000 

na 175 2.30 76.1 25.5 251.1 200000 

na 175 1.64 106.7 20.9 331.6 200000 

na 175 5.65 31.0 42.9 388.5 200000 

na 175 2.92 59.9 48.3 315.9 200000 

na 175 2.30 76.1 43.6 251.1 200000 

na 175 1.64 106.7 40.7 331.6 200000 

na 175 5.65 31.0 68.1 388.5 200000 

na 175 2.92 59.9 66.7 315.9 200000 

na 175 2.30 76.1 66.7 251.1 200000 

Sa
ki

no
 a

nd
 Y

up
in

g 
(1

99
4)

 

Ex
pe

rim
en

ta
l 

na 175 1.64 106.7 59.8 331.6 200000 

 

3.3. Monotonic Tensile Response 
                                                 
1 Es was not reported in the tests by Sakino and Yuping (1994), it was assumed as 200000 MPa 
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 When subjected to tensile loads, concrete undergoes approximately a linear elastic 

response up to a stress level of about 80% of its peak tensile strength (Yankelevsky and 

Reinhardt, 1989).  The initial elastic modulus often attains comparable values to that in 

compression.  Following the attainment of the peak tensile strength, concrete experiences 

an abrupt strength degradation response.  This is mainly attributed to the increase of 

microcracks between the ingredients of the concrete media.  The failure state is assumed 

to be reached when the stress level drops to zero indicating the fully opening of a crack.   

 
Figure 3.2 Correlation of Kc  to R  

 
In many computational models simulating the response of RCFT members, the 

tensile response of concrete is commonly neglected (Susantha et al., 2002, Varma et al., 

2002).  However, modeling the tensile response of concrete improves the accuracy of the 

nonlinear finite element models of RCFT members (Gourley and Hajjar, 1994).  Cracking 

of concrete affects the distribution of stresses across the RCFT cross-section and it might 

influence the magnitude of deflections.  The shape of the stress-strain response of 

concrete in tension possesses similarities to that of plain concrete in concrete.  An 
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ascending region until the peak tensile strength is followed by a strength degradation 

region.  However, under tensile loads the degree of nonlinearity of the ascending branch 

is smaller than the nonlinearity in compression.  In addition, concrete experiences a more 

abrupt strength degradation under tensile stresses compared to the strength degradation 

under compressive stresses. 

 Due to the difficulty in testing methods to capture the unstable post-peak 

response in tension, tensile stress-strain models for concrete are less common than 

compression stress-strain models.  In addition, most available models depend on 

parameters related to the testing methods or on parameters such as crack width that cause 

the concrete model to be impractical for a general purpose finite element program.  

Chang and Mander (1994) recommended using the equation by Tsai (1988) to simulate 

the tensile response of concrete as given below: 

 σ t = ×
×

+ −
−

⎛
⎝⎜

⎞
⎠⎟ × +

−

f
n x

n
r

r
x

x
r

t r
'

1
1 1

          [3.6] 

where: f t
'  – tensile strength of concrete 

 x
t

=
ε
ε

, 
t

ct

f
fE

n
'×

=  

 Et  – elastic modulus of concrete in tension 

 εt – tensile strain value at peak stress 

 r  – parameter to control the shape of the descending branch 
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Figure 3.3 Correlation of K fc c/ '
 to R  

Equation 3.8 was compared to the specimens tested by Gopalaratham and Shah 

(1986).  The experimental and computational stress-strain curves were found to exhibit 

good correlation when r = 4.0, as can be seen in Figure 3.5.   
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Figure 3.5 Calibration of r with Respect to the Experiments 

 In their direct tension tests on plain concrete specimens, Gopalaratham and Shah 

(1986) observed that the elastic modulus of concrete in tension can be taken as equal to 

its monotonic counterpart.  In addition, the same researchers derived Equation 3.7 to 

estimate tensile strength of concrete.   

 f ft c
' '.= ×054  (MPa)           [3.7] 

Examining the experimental data by Gopalatharam and Shah (1985) on the tensile strain 

of concrete at peak stress (εt ), Equation 3.8 was derived to calculate εt  as a function of 

f t' and Et .   

 εt
t

t
= ×123.

'f
E

             [3.8] 

3.4. Cyclic Response of Concrete 
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 The cyclic response concrete is investigated in numerous research studies in the 

literature based on theory of elasticity, theory of plasticity, plastic fracturing, and 

endochronic theory of plasticity (Chen and Buyukozturk, 1985; Yankelevsky and 

Reinhardt, 1987).  Although these models are quite powerful, their high complexity leads 

to more simplified models having polynomial family of curves defining the cyclic 

behavior of concrete (Sinha et al., 1964; Karsan and Jirsa, 1969; Yankelevsky and 

Reinhardt, 1987; Chang and Mander, 1994; Palermo and Vecchio, 2003).   

 The simplified models are commonly derived from uniaxially loaded compression 

tests performed on short plain concrete columns or cylinders (Sinha et al., 1964; Karsan 

and Jirsa, 1969).  The experimental results show that the cyclic stress-strain relation 

possesses an envelope curve bounding the unloading and reloading curves.  This 

envelope curve can be approximately represented with the stress-strain curve obtained 

from monotonic tests.  The unloading branch of concrete usually follows a concave 

nonlinear curve which has a high stiffness at the beginning and becomes flattened as the 

stress level decreases.  The reloading branch exhibits a more complicated shape which is 

close to a double curvature character.  However, it is commonly estimated through a 

family of linear curves (Sinha et al., 1964; Palermo and Vecchio, 2003).  Both unloading 

and reloading curves become more flattened as cyclic loading progresses due to gradual 

stiffness degradation in the concrete from repeated cycles of concrete crushing.  The 

intersections of the reloading and unloading curves are designated as “common points”.  

The common points are considered as the stability limits and stresses above these points 

cause additional strains.  This is attributed to a drastic increase in microcracking after the 

common points are reached.  On the other hand, the stresses at or below the common 

points put the stress-strain response into a closed loop.    

 The cyclic behavior of concrete in tension was also studied by several researchers 

(e.g., Gopalaratham and Shah, 1985; Yankelevsky and Reinhardt, 1989; Palermo and 

Vecchio, 2003).  The cyclic stress-strain relation in tension also possesses an envelope 

curve and it approximately coincides with the stress-strain curve obtained from 
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monotonic tests.  It is commonly observed that the loading and reloading curves in 

tension and in compression exhibit similar characteristics. 

 Behavior of concrete under random load histories is critical in nonlinear finite 

element analysis of RCFT structures.  The chosen cyclic concrete model should be 

appropriate to simulate the experimental behavior of RCFT members.  Gourley and 

Hajjar (1994) identified the following characteristics in the load-deformation response of 

RCFTs that can be attributed to the cyclic response of concrete. 

- A decrease in the size of elastic zone (in stress-resultant-space) is evident in 

the tests, which is mainly caused by concrete crushing and local buckling of 

the steel tube. 

-  As cyclic loading progresses, strength degradation takes place due to concrete 

crushing and local buckling of the steel tube. 

- RCFT members also exhibit a gradual reduction in stiffness at the later 

stages of cyclic loading, partly attributed to the damage accumulated in 

concrete. 

 Chang and Mander (1994) developed a concrete model that was shown to be 

accurate for both confined and unconfined concrete.  Based on the experimental test 

results identified by Gourley and Hajjar (1994), this model is also considered to be 

appropriate to be used for RCFT members and therefore, it is implemented in this study. 

The model by Chang and Mander (1994) consists of three components designated as 

envelope curves, connecting curves, and transition curves.  Envelope curves are assumed 

as the backbones of the hysteretic response.  Figure 3.6 illustrates the envelope curves 

derived in the previous section for tension and compression.  Connecting curves represent 

the loading and unloading branches between the envelope curves.  Transition curves 

provide the rule to shift from one connecting curve to the other going in the opposite 

direction.  Chang and Mander (1994) proposed a single polynomial equation to represent 

both connecting and transition curves.  If ( εi ,σ i ) and (ε f ,σ f ) are the strain values of 

the initial and final points of connecting or transition curves, the polynomial equation 
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defining the curve between these points is given in Equation 3.9.  The derivative of 

Equation 3.9 produces the polynomial representation of its tangent, which can be found 

in Equation 3.10.     

[ ]σ ε σ ε ε ε εcc i i i i( ) ( )= + − × + −E A
R

           [3.9] 

( )E E A Rcc

R
( ) ' ( )ε σ ε ε ε= = + + −i i1        [3.10] 

where: R
E E
E E

f

i
=

−

−
sec

sec
 

 A
E Ei

f i

R=
−

−

sec

ε ε
 

 Ei  – tangent at (εi ,σ i ) 

 E f  – tangent at ( ε f ,σ f ) 

 Esec – slope of secant line between (εi ,σ i ) and ( x f , y f ) 

 

Figure 3.6 Envelope Curves of the Concrete Model 
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The graphical representation of the connecting and transition curves is presented 

in Figure 3.7.  The accuracy of these curves is determined by the variables defining the 

coordinates and slopes at the two ends, which are often defined based on empirical 

equations developed by Chang and Mander (1994).  The experimental tests on moderate 

strength concrete specimens with compressive strengths ranging from 20 MPa to 40 MPa 

were utilized while defining the end points of the connecting and transitions curves.  

However, Chang and Mander (1994) performed verification studies of the proposed 

equations for confined concrete specimens with compressive strengths up to 80 MPa.  

The empirical equations will be presented as needed while describing the cyclic rules 

followed by concrete.  It should be noted the main assumption in developing the 

connecting and transition curves is that they are in single curvature.  This statement 

forces the expression given in Equations 3.13 and 3.14 to hold as shown below: 

 σ σ σi < <cc f          [3.13] 

( ) ( )E E E Ei f> <sec secΛ        [3.14] 

3.4.1. State Determination Algorithm of the Concrete Fibers 
 

 The state determination of the material fibers is often performed during force 

recovery phase of fiber-based nonlinear finite element solution algorithms, where the 

stress and stiffness of the material fibers are integrated to obtain internal forces and 

stiffness matrices of the elements.  In Updated-Lagrangian fiber-based finite element 

formulations including displacement-based, force-based, and mix types, incremental 

strains of concrete fibers ( 1ε ) defined with respect to the last converged configuration 

(C1) are added to the total strain in the last converged configuration ( 1ε ) to obtain the 

total strain ( 1
2ε ) in the current configuration (C2) defined with respect to C1.  The 

equation illustrating the procedure to calculate 1
2ε  is given below.  

 1
2 1

1ε= ε ε+                       [3.15] 
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Figure 3.7 Connecting and Transition Curves of the Concrete Model 

The previous strain and stress history of a material fiber is monitored through 

state variables, which are specific to the concrete model being used.  The state variables 

range from stress, strain, and stiffness quantities to integer flags designating significant 

events experienced by the material fiber (e.g., change in direction of loading, cracking 

etc.).  Updating the states variables is performed based on 1
2ε  only if it is determined that 

the Newton-Raphson solution step of the nonlinear solution algorithm is in a converged 

state. 

A total of 13 rules were defined to describe the cyclic response of a concrete 

material fiber adopting the study by Chang and Mander (1994).  Each rule states the 

relation between stress and strain throughout the loading history.  In this study, the 

existing rules were fully implemented and then new rules, identified in the sections 

below, were developed in order to increase the breadth of the model under complicated 

cyclic loadings generated during nonlinear time history analysis. 

In the algorithm developed to trace the cyclic stress-strain response of concrete, 

the state of the material fibers are decided based on the variables defined below: 

 1Rc  – rule in C1 configuration 

 1Rf - cyclic rule attained before 1Rc  initiated 

 1ε – strain in C1 configuration  

 

Esec 
Ei 

Ef 
(ε f ,σ f ) 

(εi ,σ i ) 
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 1
2ε - strain in C2 configuration with respect to C1 configuration 

• Rule 1 

Rule 1 represents the state of the material fiber on the envelope curve defined in the 

compression region (see Figure 3.6, Equation 3.1 – 3.5).  If no reversal exists in the 

strain history, the loading is compressive and the concrete fiber will retain Rule 1.  

Following a strain reversal, Rule 1 is recovered if the concrete fiber undergoes a 

compressive strain level ( 1
2ε ) beyond the final strain level of the connecting curves 

that are under the reloading state. The final strain levels of the connecting curves are 

designated as 1εre and 1ε∗
re  for full reloading and partial reloading, respectively.  Full 

reloading and partial reloading connecting curves are described in Figure 3.8 for a 

sample loading history of a generic material.  As it will be described in the following 

sections, unloading, full reloading, and partial reloading curves correspond to 

different cyclic rules depending on the past strain history.  Figure 3.9 illustrates the 

possible strain histories to attain Rule 1.  For example, Rule 1 can be reached 

following full reloading that can be defined by Rule 5, Rule 7, Rule 10, or Rule 13.  It 

is also possible to reach Rule 1 through maintaining compressive loading after partial 

reloadings defined by Rule 5 and Rule 7.  It should be noted whether concrete 

experiences full reloading by Rule 5, Rule 7, Rule 10, and Rule 13 or partial 

reloading by Rule 5 and 7, Rule 1 is connected to the aforementioned rules through 

second branch of Rule 7 introduced below.    

• Rule 2 

The envelope curve of concrete in tension, which is presented in Equation 3.6, is 

defined as Rule 2.  Rule 2 is maintained unless there is no reversal in a tensile loading 

history.  In the case of a load reversal, Rule 2 can be recovered only if the current 

strain level breaches the final strain values of the reloading curves, which are defined 

as 1εre
+ and 1ε∗

re
+  for the full reloading and partial reloading curves, respectively.  The 

possible strain histories for which Rule 2 can be attained are illustrated in Figure 3.10. 

The stress-strain rules that can be experienced prior to undergoing Rule 2 consist of 
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reloading curves of Rule 9, Rule 8, and Rule 6.  The connection between the 

reloading curves and Rule 2 is always defined by the second branch of Rule 8.  The 

details of the aforementioned reloading curves can be found in the following sections.                    

 

Figure 3.8 Loading, Reloading, and Unloading Curves of the Concrete Model 

 

Figure 3.9 Determination of Rule 1 in the Concrete Model 
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Figure 3.10 Determination of Rule 2 in the Concrete Model 

• Rule 3 

Unloading from the compression envelope curve is simulated through the connecting 

curve defined as Rule 3.  Initiation of this branch of the concrete model is detected by 

tracing the sign of 1ε  , where a positive strain increment is experienced following a 

prior strain history of Rule 1 ( Rc =1).  In Rule 3, the strain-stress relation is 

determined using Equation 3.9 and 3.10 with initial and final points of ( 1εunld
− , 1σunld

−  ) 

and  ( 1ε pl
− , 0), respectively.  The empirical relation to calculate 1ε pl

−  can be seen in 

Equation 3.15.  The experimental results showed that Rule 3 starts with a high tangent 

value, which is taken as equal to Ec  (see Equation 3.2).  The final point is attained 

with a mild slope of 1E pl
−  calculated using Equation 3.16 given below.  The graphical 

representation of Rule 3 under various strain histories can be found in Figure 3.11. 
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⎜
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⎟
⎟
⎟
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1
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σ
ε

ε
ε

      [3.15b] 

 (see Equation 3.2 for Ec , Equation 3.8 for εt ) 

1 01 2E Epl c
−

−

= × × − ×
⎛

⎝
⎜

⎞

⎠
⎟. exp unld

c

1ε
ε

        [3.16] 

(see Equation 3.3 for εc ) 

• Rule 9 

Rule 9 is the connecting curve defining the cyclic response towards the positive 

envelope curve following a full unloading from the negative envelope curve as 

described in Rule 3.  The stress-strain response in Rule 9 is monitored using 

Equations 3.9 and 3.10, where the initial and final points are taken as ( 1ε pl
− , 0) and 

( 1εunld
+ , 1σnew

+ ), respectively.  The tangent of the curve defining Rule 9 starts with a 

value of 1E pl
−  and attains 1Enew

+  on the positive envelope curve.  The empirical 

equations to calculate 1σnew
+  and 1Enew

+  are given in Equations 3.17 and 3.18, 

respectively. 

 

 1 1σ σnew unld
+ += ×085.                       [3.17] 
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+

+
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1

1 1

σ
ε ε

new

unld pl
        [3.18a] 

 1 1
1

1ε εpl unld
unldf

E
+ +

+
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sec

        [3.18b] 
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where: 
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 1εo is the offset strain (see Figure 3.12) 

The values of  1εunld
+  and 1σnew

+  in Equations 3.17 and 3.18 are obtained as shown in 

Figure 3.13 in the case of a full unloading from the compression envelope.  The 

graphical representation of Rule 9 can be seen in Figure 3.14. 

 
Figure 3.11 Determination of Rule 3 in the Concrete Model 

• Rule 4 

Rule 4 determines the relation between stress and strain following an unloading from 

the compression envelope curve.  The mathematical expression of Rule 4 is stated as 

given in Equation 3.9 and 3.10.  The cyclic response of concrete attains Rule 4 if the 

sign of 1ε  becomes positive when 1Rc is equal to 1.  The initial and final points of the  

curve defining Rule 4 are ( 1εunld
+ , 1σunld

+ ) and ( 1ε pl
+ , 0), respectively.  Rule 4 starts with 

an initial tangent of Ec and attains E pl
+ at its final point.  1εunld

+  and 1σunld
+  are obtained 

from the strain and stress points of the last converged configuration, respectively, 

when the cyclic response shifts to Rule 4.  1ε pl
+  is calculated using Equation 3.18 

while 3.19 given below is utilized to obtain E pl
+ .  In Figure 3.15, the graphical 

representation of Rule 4 is illustrated. 
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E
Ec

unld o
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ε ε
εt

1.1

1

       [3.19] 

 

Figure 3.12 Definition of Offset Strain 1εo  

 

Figure 3.13 Calculation of 1εunld
+  and 1σnew
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Figure 3.14 Determination of Rule 9 in the Concrete Model 
 

• Rule 7 

Rule 7 is developed to simulate the reloading response of concrete in compression.  It 

is defined as a two branch curve.  The first branch represents the stress-strain 

response with a linear nature before strain values increase significantly due to 

microcracking.  The second branch, on the other hand, connects the reloading curve 

to the compression envelope beyond the stability point, where drastic increases in 

strain values initiate. Both branches of Rule 7 are calculated using Equations 3.9 and 

3.10.  The first branch ranges between ( 1εr
− , 1σ r

− ) and ( 1εunld
− , σnew

* − ) with an initial 

slope of Ec  and a final slope of  Enew
* − .  The second branch links ( 1εunld

− , 1σnew
* − ) and  

( 1εre
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* − ), where its tangent starts with 1Enew
* −  and converges to 1Ere

* − .  The first 

branch of Rule 7 is detected if 1Rc  is equal to 3 and the sign of 1ε  becomes negative.  

The second branch of Rule 7 is traced when 2ε  becomes smaller than 1εunld
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expressions to obtain 1σnew
* − , 1Enew

* − , 1εre
* − , 1σ re

* − , and 1Ere
* − are given below.  The 

graphical representation of Rule 7 along with the state variables can be seen in Figure 

3.16. 

 

Figure 3.15 Determination of Rule 4 in the Concrete Model 
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unld

c

       [3.22b] 

 1 1σ σ εre re
* *( )− −= cc  (Equation 3.1a)        [3.23] 

 1 1E Eccre re
* *( )− −= ε  (Equation 3.1a)        [3.24] 

 

Figure 3.16 Determination of Rule 7 in the Concrete Model 

• Rule 8 

Rule 8 represents the stress-strain relation of a reloading type response following a 

partial unloading from the positive envelope curve.  There exist two branches 

corresponding to the strain ranges before and after the attainment of 1εunld
+ .  The first 

branch is valid for the stress-strain points between ( 1εr
+ , 1σ r

+ ) and ( 1εunld
+ , 1σnew

* + ), 

where the initial and final tangents are Ec and 1Enew
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where the tangent of the curve starts with  1Enew
* +  and converges to 1Ere

* + .  The 

empirical expressions to calculate 1σnew
* + , 1Enew

* + , 1εre
* + , 1σ re

* + , and 1Ere
* + are given 

below.  Rule 8 is illustrated graphically in Figure 3.17. 
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          [3.26] 

 1 1
1 1

1 1ε ε
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+ +

+ += + ×
−
−unld

unld r

unld pl
Δ ε       [3.27a] 

 Δ ε ε+ += ×0 25. 1
unld         [3.27b] 

 1 1σ σ εre re
* *( )+ += t  (Equation 3.6)        [3.28] 

 1 1E Etre re
* *( )+ += ε  (Equation 3.6)        [3.29] 

• Rule 5 

Unloading from the second branch of Rule 7 is simulated by Rule 5.  This feature was 

not addressed in the original model by Chang and Mander (1994).  Rule 5 is 

introduced in this study to improve the comprehensiveness of the model under 

complicated cyclic loadings.  It was assumed that the curve defining Rule 5 can be 

obtained using Equations 3.9 and 3.10 where the stress-strain points at the initial and 

end points are ( 1εunld
− , 1σunld

− ) and ( 1ε pl
− , 0).  The tangent of the curve starts with Ec  

and converges to E pl
− .  1εunld

−  and 1σunld
−  are assumed to be the strain and stress values 

at the last converged step, respectively when 1Rc is equal to 7 and the sign of 1ε  

becomes positive. 1ε pl
−  and 1E pl

− can be calculated using Equations 3.15 and 3.16, 

respectively.  The graphical representation of Rule 5 can be found in Figure 3.18.  
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Figure 3.17 Determination of Rule 8 in the Concrete Model 

• Rule 5* 

The reloading type of connecting curve linking the unloading curve of Rule 5 to the 
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1σunld
+  ) and ( 1ε pl

+ , 0).  The tangent of the curve simulating Rule 6 starts with Ec  

and converges to E pl
+ .  1εunld

+ and 1σunld
+  are taken as the converged strain and stress 

points, respectively when 1Rc  is equal to 8 and the sign of 1ε  becomes negative.  1ε pl
+  

and E pl
+  are obtained using Equations 3.18 and 3.19, respectively. Figure 3.20 

presents the graphical representation of Rule 6. 

 

Figure 3.18 Determination of Rule 5 in the Concrete Model 

• Rule 6* 

Rule 6* is devised to simulate any strain reversal that takes place when the stress-

strain response is following Rule 6.  The reloading type curve defined for Rule 6* is 

expressed using Equations 3.9 and 3.10.  The initial and final points of Rule 6* are 

taken as ( 1εr
+ , 1σ r

+ ) and ( 1εunld
+ , 1σnew

* + ), respectively.  The tangent of the curve 

representing Rule 6* ranges from Ec  to 1Enew
* + .  The values 1εr

+  and 1σ r
+  are 

determined from strain and stress values of the last converged step when 1Rc  is equal 

to 6 and the sign of 1ε  becomes negative.  1σnew
* + and 1Enew

* +  are determined using 

Equations 3.25 and 3.26.  Rule 6* is illustrated graphically in Figure 3.21 for a 

representative strain history. 
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Figure 3.19 Determination of Rule 5* in the Concrete Model 

 

Figure 3.20 Determination of Rule 6 in the Concrete Model 
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Figure 3.21 Determination of Rule 6* in the Concrete Model 

• Rule 10 

A full unloading from the positive envelope curve is connected to the negative 

envelope curve through Rule 10.  Rule 10 is expressed using Equations 3.9 and 3.10 

with initial and final points of ( 1ε pl
+ , 0) and ( 1εunld

− , 1σnew
− ), respectively. Having 2ε  

smaller than 1ε pl
+  when 1Rc  is equal to 4, it is decided that the cyclic response of 

concrete attains Rule 10.  The tangent of the curve defining Rule 10 starts with 
1E pl

+ and reaches Enew
− at its final point.  1εunld

−  is determined from the previous strain 

history when unloading took place from the negative envelope.  1ε pl
+ , and 1E pl

+ are 

obtained from Equations 3.18 and 3.19.  1σnew
−  and Enew

−  are calculated using Equation  

3.30, 31 given below, respectively.  Figure 3.22 illustrates the stress-strain curve 

simulated by Rule 10 for a representative strain history. 

1 1σ σ σnew unld
− − −= − Δ , Δ σ σ

ε
ε

− −
−

= × ×0 09. 1
1

unld
unld

c
       [3.30] 
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E new

unld pl
new
−

−

− −=
−

σ
ε ε

          [3.31] 

 
Figure 3.22 Determination of Rule 10 in the Concrete Model 

• Rule 13 

Similar to Rule 10, Rule 13 also extends the full unloading in the tension region to the 

negative envelope curve in the compression region.  However, Rule 13 becomes 

active once the tensile strength of concrete vanishes.  Therefore, it starts on the strain 

axis at point ( 1εr
+ , 0) and attains ( 1εunld

− , 1σnew
− ).  1εr

+  is the strain level at the last 

converged configuration before Rule 13 initiates with a negative value of 1ε  

following concrete cracking with zero tensile strength.  1εunld
−  is obtained from the 

previous strain history and Equation 3.30 is used to calculate 1σnew
− .  The tangent of 

the curve defining Rule 13 starts with a zero slope and reaches to a level of Enew
−  given 

in Equation 3.31.  Rule 13 is illustrated graphically in Figure 3.23 for a representative 

strain history. 

• Rules 11 and 12 
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Rule 11 and 12 are defined to simulate the unloading type of behavior from Rule 9, 

Rule 10, and Rule 13.  Both rules were developed in this work with two linear 

branches where an unloading type of response is followed by a reloading type of 

response in the opposite direction.  The unloading branch is assumed to take place 

with a slope of Ec at point ( 1εr
+ , 1σ r

+ ) in the tension region or at point ( 1εr
− , 1σ r

− ) in the 

compression region.  Then, the reloading branch continues until the points of 

( 1εr
+ , 1σ r

+ ) and ( 1εr
− , 1σ r

− ) in the tension and compression regions, respectively.  As 

presented in Figures 3.24 and 3.25, the points defining Rule 11 and Rule 12 are 

obtained by monitoring the previous strain history.  Rules 11 and 12 do not exist in 

the original model by Chang and Mander (1994).  However, similar rules were 

developed based on Equations 3.9 and 3.10.  In this study, linear approximations are 

introduced to derive Rule 11 and 12.  This approach helps avoid numerical 

difficulties, which require implementation of special finite element techniques such as 

subincrementation. 

 

Figure 3.23 Determination of Rule 13 in the Concrete Model 
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3.5. Numerical Simulation Examples for Cyclic Concrete 
Model 

The concrete model by Chang and Mander (1994) was implemented in the current 

work and compared to a wide range of experiments for both plain concrete and 

confined concrete from the literature.  Experiments conducted on concrete cylinders, 

cubes, or short concrete columns under uniaxial pure compression were studied.  The 

computational model was developed in OpenSees through analyzing a short truss 

element under a given displacement history.  Good correlation was achieved between 

the experimental and computational results, as can be seen from the sample of results 

from Sinha et al. (1964), Okamoto (1976), Karsan and Jirsa (1984) and Mander et al. 

(1984) presented in Figures 3.26 through 3.30.  Sinha et al. (1964) conducted tests on 

15.2 x 30.5 cm concrete cylinders with a compressive strength of 28 MPa.  The 

specimen by Karsan and Jirsa (1984) was a rectangular 7.62 x 12.7 cm plain concrete 

cube and the compressive strength of the concrete was 28 MPa.  Mander et al. (1984) 

tested a spirally reinforced-concrete circular column.  The specimen had a diameter of 

19.7 in and a compressive strength of concrete of 28 MPa.    

  

Figure 3.24 Determination of Rule 11 in the Concrete Model 
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Figure 3.25 Determination of Rule 12 in the Concrete Model 

 

Figure 3.26 Comparison of Experimental and Analytical Results for Unconfined 
Concrete (Karsan and Jirsa, 1969) 
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Figure 3.27 Comparison of Experimental and Analytical Results for Unconfined 
Concrete (Sinha et al. 1964) 

 

Figure 3.28 Comparison of Experimental and Analytical Results for UnConfined 
Concrete (Sinha et al. 1964) 
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Figure 3.29 Comparison of Experimental and Analytical Results for Confined Concrete 
(Mander et al., 1984) 

 

Figure 3.30 Comparison of Experimental and Analytical Results for Confined Concrete 
(Mander et al., 1984) 
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Chapter 4  
 

4. Uniaxial Cyclic Steel Constitutive Model for 
RCFT Members and Steel Girders 

 
 
4.1. Introduction 
 

Cyclic excursions under earthquake loadings in RCFT beam-columns and steel 

girders in composite frames create complex strain histories in steel fibers.  Developing a 

refined steel constitutive model requires capturing the loading history dependency and 

cyclic characteristics observed in the experimental tests.  Constitutive relations derived as 

explicit functions of stress and strain are commonly utilized in nonlinear analysis of steel 

and reinforced concrete structures (Ramberg and Osgood, 1943; Menegotto and Pinto, 

1973; Balan et al., 1998).  Alternatively, the incremental relation between stress and 

strain may be established based on a set of hardening and flow rules (Dafalias and Popov, 

1975; Cofie and Krawinkler, 1985; Mizuno et al., 1991; Shen et al., 1995).  In these 

formulations, the cyclic characteristics of steel are represented by introducing internal 

variables and incorporating them with the constitutive relations.   

Experimental research studies performed on RCFT members exhibited the 

following features that can be attributed to the cyclic response of the steel tube (Gourley 

and Hajjar, 1994; Hajjar et al., 1997).  The steel constitutive model adopted to simulate 

the cyclic load-deformation behavior of RCFT members should be comprehensive 

enough to capture these characteristics including.    

- Elastic unloading following a load reversal 

- Decreasing elastic zone and gradual stiffness reduction as a result of cyclic 

loading 

- Bauschinger effect causing a reduction in the yield stress when a strain history 

in one direction is followed with that in the opposite direction  
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- A bounding stiffness that is attained near the end of the tests due to the 

stabilizing action of the steel tube 

- Local buckling of the steel tube 

Steel fracture is currently neglected in this work, as RCFTs are robust members 

that rarely fracture until very late in cyclic loading histories.  In the current research 

study, the emphasis will be placed on cold-formed steel tube sections.  Therefore, the 

effects of the cold-forming process given below should also be considered in the steel 

model together with the aforementioned features. 

- Smooth transition between elastic and plastic response, rather than formation 

of a significant yield plateau 

- Gradient of the yield stress along the perimeter of the steel tube 

 Hajjar et al. (1998a, 1998b) developed a multiaxial bounding surface plasticity 

model for nonlinear analysis of RCFT members.  An inner loading surface was 

introduced defining the boundary between elastic and plastic response.  The stress state 

was assumed to be elastic if it remains inside the loading surface.  The bounding surface 

enclosed the loading surface and the degree of plasticity attained during the loading 

history was expressed as function of the distance between the loading and bounding 

surfaces.  Auxiliary surfaces were also defined to achieve a better prediction of the plastic 

modulus.  The surfaces had the property of translation and expansion based on a set of 

hardening rules to capture strain hardening response and the Bauschinger effect.  The 

effect of cold forming was incorporated into the model through assuming an initial plastic 

strain.  Different magnitudes of initial strain were assumed for the corner and flat regions 

of the steel tube.  The model by Molodan and Hajjar (1998) was calibrated with respect 

to coupon tests and verified against experimental studies ranging from individual RCFT 

beam-columns to 3D cruciform frames with RCFT columns and steel girders.     

Varma (2000) and Domenech et al. (2002) derived a uniaxial cyclic steel 

constitutive models for RCFT members, where stress and strain are related to each other 

by defining a family of linear functions.  The model had the capability of accounting for 

strain hardening, Bauschinger effect, biaxial stress state of the steel tube, and local 

buckling.  The internal variables describing the compression envelope of the model were 
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obtained through extracting effective stress-strain curves from 3D continuum analysis of 

short RCFT columns under monotonic compressive loading.  The model is verified with 

respect to RCFT beam-column tests under monotonic and cyclic loadings.  

The stress-strain model employed in this research study is adopted from the 

uniaxial bounding surface model by Mizuno et al. (1991) and Shen et al. (1995).  The 

envelope curves in tension and compression were modified based on experimental test 

results on RCFT members.  In addition, new cyclic rules were introduced to account for 

the effect of local buckling.  In the following sections, the key features of the model are 

documented in detail and several verification examples are presented to illustrate the 

performance of the model. 

 
4.2. Monotonic Response 
 

RCFT members exhibit a wide range of failure characteristics depending on the 

geometric and material properties of the specimens.  For example, slender and high 

strength RCFT members are often susceptible to flexural buckling without exhibiting 

significant local damage states (except under the large deformations that are seen at 

incipient buckling).  On the other hand, short RCFT members attain their failure state 

through experiencing the limit states of yielding of the steel tube, concrete crushing, and 

local buckling of steel tube.  Therefore, the behavior of short RCFT members provides 

detailed insights to the constitutive models to be adopted both for the steel tube and the 

concrete core. 

Based on the response of short RCFT columns under concentric compressive 

loading, the compression envelope of the steel tube is assumed to consist of four distinct 

regions.  A linear elastic branch is maintained until the proportional limit is breached.  

The yielding stress is attained following a smooth nonlinear transition region.  The 

yielding stress is preserved with a mild hardening slope until the initiation of local 

buckling.  A linear strength degradation response is assumed once local buckling damage 

state is reached.  At high strain levels, a constant stress response is attained.  

The tension envelop curve is often assumed to be identical to its counterpart in 

compression (Balan et al., 1998).  However, the linear strength degradation response due 
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to local buckling and the following constant stress region are not modeled.  Figure 4.1 

illustrates the compressive and tensile envelope curves adopted for the cyclic stress-strain 

response of the steel tube. 

 
Figure 4.1 Envelope Curves of the Steel Model 

 
The stress-strain response obtained from coupon tests of cold-formed steel 

sections exhibits a low proportional limit with no distinct yield plateau and transition 

region to hardening.  Lu and Kennedy (1994) reported proportional limits at stress levels 

as low as 25% of the yield stress determined according to 2% offset rule.  On the other 

hand, proportional limits more than 90% of the yield stress were reported in the tests by 

Karren (1967).  Proportional limits on the order of 50% were also reported by Clarke and 

Hancock (1991) and Furlong (1968) for both corner and flat regions.  This premature 

reduction of tangent modulus of steel is attributed to the effect of residual stresses that are 

generated as a result of the cold-forming process.  Two types of residual stress patterns 

exist due to cold forming process including membrane residual stresses and through 

thickness residual stresses (Sherman, 1992).  Membrane residual stresses exhibit a 

gradient around the perimeter of the steel tube and they represent the average values of 

through thickness residual stresses in the longitudinal direction around steel tube 

perimeter.  The magnitude of membrane residual stresses is often small and they can be 
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assumed to be zero (Sully and Hancock, 1996).  Through thickness residual stresses are 

also known as bending residual stresses and vary from tension to compression across the 

tube thickness.  The magnitude of bending residual stresses can go up to the yield stress 

level.  Despite their nonlinear nature, the through thickness residual stress gradient is 

usually assumed to be linear (Sherman 1992; Davison and Birkemoe, 1983).  The 

welding residual stresses are observed at the regions close to the seam weld location and 

their magnitude can also reach to very high levels.  However, due to their localized 

nature, it is also common to neglect welding residual stresses (Molodan and Hajjar, 

1998).  Therefore, in analytical modeling of cold-formed sections, only the through 

thickness type residual stresses needs to be accounted for.  One approach to simulate the 

effect of cold forming is to derive a nonlinear relation to represent the response between 

the proportional limit and the yielding point (Davison and Birkemoe, 1983; Yan-Lin, 

1992).  However, since the stress-strain response until yielding is defined in two 

segments, it becomes difficult to adopt this method into a cyclic constitutive model that is 

based on a set of hardening rules.  Therefore, in this study, following the prior work of 

Molodan and Hajjar (1998), an initial plastic strain ( ε po ) of 0.0006 and 0.0004 are 

introduced for the corner and flat regions, respectively.  As can be seen in Figure 4.2 and 

Figure 4.3, the steel model with the assumed plastic strain levels reproduced the stress-

strain response of experimental coupon tests available in the literature with good 

accuracy. 

The corner regions of the steel tube are often subjected to more severe residual 

stresses due to the higher degree of cold-forming than the flat regions.  This results in 

variation of the material properties around the perimeter of the steel tube.  Table 4.1 

illustrates the material properties obtained from the coupon test results available in the 

literature.  It can be seen that the yield strength ( f yc ) and ultimate strength ( f uc ) of the 

corner regions is consistently larger than those of the flat regions ( f yf , f uf ).  In this 

research study, the average values of f fyc yf/ and f fuc uf/ from Table 4.1 are assumed as 

1.09 and 1.03, respectively, while conducting analysis of RCFT members.  
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Figure 4.2 Comparison of Experimental and Computational Coupon Test Results 
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Figure 4.3 Comparison of Experimental and Computational Coupon Test Results 
(cont’d) 

 
The steel tube of RCFT members are susceptible to local buckling under 

compressive loadings.  Being in contact with a rigid medium, the local buckling takes 

place in the form of cosinal outward buckles due to the restraining action of the concrete 

core against the formation of sinusoidal inward buckles (Wright, 1993).  This type of 

behavior is often considered as a higher mode of buckling and it provides a larger 

compressive capacity compared to the bare steel tubes.  Examining the past research 

studies, a methodology will be established to determine the initiation of local buckling 

and to quantify its effect on the stress-strain response as shown in Figure 4.1.   

 
Table 4-1 Variation of Steel Material Properties Due to Cold Forming Process 

 
Reference fyf (MPa) 

(flat) 
fyc (MPa) 
(corner) 

fuf (MPa)  
(flat) 

fuc (MPa)  
(corner) 

Clarke and Hancock (1991) 349.0 469.0 414.0 504.0 
337.4 390.1 na na 
356.5 415.6 na na Furlong (1979) 
408.0 423.2 na na 
310.8 342.4 na na 
300.8 351.5 na na 
312.7 340.3 na na 

Bridge (1976) 

297.5 331.5 na na 
456.0 490.0 490.0 506.0 
454.0 379.0 474.0 440.0 Lu and Kennedy (1994) 
433.0 405.0 444.0 416.0 
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majority of the studies focused on obtaining the buckling stress either experimentally or 

computationally and then deriving a corresponding effective length factor of the steel 

tube wall.  The effective length factor of plates depends on the aspect ratio and the 

boundary conditions (Salmon and Johnson, 1996).  If the length of the plate becomes 

large compared to its width, the effect of aspect ratio on the effective length factor 

diminishes and the effective length can be obtained as 4 if the support conditions are 

simply supported and it becomes 6.97 in the case of fixed boundary conditions (Salmon 

and Johnson, 1996).  Ge and Usami (1991) tested stiffened and unstiffened thin-walled 

short RCFT columns under cyclic axial loading.  The longitudinal stiffeners placed inside 

the steel tubes were found to improve the local buckling strength considerably.  The local 

buckling stress of the specimens was obtained by subtracting the axial strength of the 

concrete core from the experimental maximum axial load of the composite column.  

Then, the resulting expression was divided by the cross-sectional area of the steel tube.  

The buckling stress levels were compared with the empirical equation proposed by Nakai 

et al. (1986), where fixed boundary conditions and a buckling of coefficient ( k ) of 10.67 

was assumed.  It was found that the empirical equation produced unconservative results 

for some of the specimens indicating that the fixity of the steel tube walls was 

overestimated such that a buckling coefficient less than 10.67 needs to be used.  Wright 

(1993) obtained the limiting D t/ ratios to prevent local buckling based on energy 

principles for the steel plates under uniform compression.  Buckling shapes were 

assumed considering the boundary conditions of a variety of steel sections including bare 

steel tubes, RCFTs, steel reinforced columns, and wide flange shapes.  The energy 

resulting from deformation of the steel plate into the buckled shape was equated to the 

energy applied by the external loads.  Assuming the buckling stress to be equal to the 

yielding stress, the resulting expression was differentiated to obtain the maximum D t/  

corresponding to the given aspect ratio.  Uy and Bradford (1996) developed a finite strip 

analysis method to calculate the buckling stress of steel plates in contact with a rigid 

medium.  It was considered as a semi-analytical finite element method, where out-of-

plane deformations of the plate finite element were approximated via a finite number of 

harmonic functions while the transverse displacements were interpolated using 
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polynomial functions.  This approach reduced the computation time compared to the 

standard finite element methods.  Stating the element equilibrium based on the principle 

of virtual displacements and developing the kinematic and constitutive relations, an 

eigen-value equation was derived to solve for the buckling shapes and stresses.  The 

buckling stresses (σ cr ) were calculated for a range of steel plates with different boundary 

conditions and stress gradients.  The corresponding buckling coefficients were derived 

using the elastic buckling equation of perfect steel plates given below (Galambos, 1998).   

σ
π

υcr =
×

× − ×
k

E
12 1 D / t

s
2 2

2

( ) ( )
          [4.1] 

where: k  is the buckling coefficient 

 υ is the Poisson’s ratio (0.3) 

In the case of steel plates with clamped boundary conditions and uniform compressive 

stress distribution k  was obtained as 10.3.  Bridge et al. (1995) conducted an 

experimental study on short thin-walled bare steel tubes and unbonded RCFT columns 

under monotonic compressive loading.  For the RCFT columns, the loading was applied 

on the steel tube alone.  The experimental results indicated that concrete filling increased 

the local buckling resistance of the steel tubes.  An elastic finite strip analysis was also 

performed to identify the buckling stresses and modes of deformation.  Assuming 

clamped boundary conditions for the edges of the steel tube, a buckling coefficient of 

9.99 was found to be appropriate for the steel tube in contact with the concrete core.  Uy 

(1998) performed an experimental study to examine the local buckling characteristics of 

short and thin-walled RCFT columns.  Two types of loading schemes were applied to the 

specimens such that the axial load was either introduced to the steel tube only or it was 

applied to the composite section.  The specimens tested by the former loading scheme 

exhibited lower elastic local buckling strengths compared to the ones subjected to the 

latter loading scheme.  In the case of specimens that underwent inelastic buckling, the 

stress level at initiation of local buckling was found to be equal to the yielding stress.  Uy 

(1998) also developed a finite strip analysis method to calculate the buckling stresses 

assuming clamped boundary conditions.  The computational results exhibited good 

comparison with the experimental results.  However, based on the discrepancies observed 
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for the elastic local buckling, the full fixity condition of the edges of the steel tubes was 

found to be slightly breached.  Liang and Uy (2000) carried out a computational study to 

investigate the post-local buckling response of steel plates with clamped boundary 

conditions representing the steel tube walls of short RCFT columns.  The steel plate was 

modeled with 3D continuum elements.  The analysis was conducted over a range of steel 

plates with different slenderness, residual stress, and initial imperfections.  The steel 

plates were found to exhibit lower local buckling stress levels with increasing values of 

residual stress and initial imperfections.  Upon local buckling significant reserve 

strengths were exhibited by the steel plates.  In order to take advantage of this post-local 

buckling capacity in design, two effective width (be ) formulas were introduced.  The 

effective width accounted for the fact that following local buckling, the flexible parts of 

the steel tube become ineffective in resisting the load and the stresses are transferred to 

the stiffer regions.  The effective width represents the stiff regions of the steel tube that 

continue to retain stress after local buckling develops.  Therefore, the axial load capacity 

of the steel ( Pus ) can be calculated using Equation 4.1.  The axial load capacities obtained 

based on the effective width principles for the specimens available in literature exhibited 

good correlation with the experimental results.  Liang and Uy (2000) suggested an 

effective length factor 9.81 for the steel tubes of RCFT columns. 

P b t fus e y= × ×             [4.2] 

Bradford et al. (2002) investigated the local buckling of the steel tubes of circular CFTs 

(CCFT).  In contrast to previous research studies adopting finite element or finite strip 

methods to examine local buckling, Bradford et al. (2002) employed the Rayleigh-Ritz 

method to determine the local buckling stresses and modes shapes.  The change in the 

total potential of the circular steel plate is derived as the difference between strain 

energies and the work done by the applied loading.  Minimizing the resulting expression 

with respect to the Ritz coefficient, the buckling stress and mode shapes of circular steel 

tubes in contact with a rigid media were derived.  It was found that the strength of 

circular steel tubes when they are in contact with rigid media is 1.73 times larger than 

bare circular steel tubes.  This factor is approximately 2.67 in the case of RCFTs, which 
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shows that the beneficial effect of concrete filling against local buckling is more 

pronounced rectangular plates.  Bradford et al. (2002) adopted an effective diameter 

concept to evaluate the post-local buckling response of CCFTs. 

As shown in Figure 4.1, in the current research study, the effect of local buckling 

is taken into account by introducing a strength degradation region in the stress-strain 

response following its occurrence.  The strength degradation initiates once a threshold 

value of strain is breached to initiate local buckling.  In the case of elastic local buckling, 

Equation 4.1 may be used to detect the strain level at the instant of local buckling by 

dividing it by the elastic modulus.  However, Equation 4.1 requires the assumption of an 

effective length factor, which ranges from 9.81 to 10.67 and the use of these effective 

length factors was not justified for cold-formed steel tubes.  If local buckling takes place 

after yielding, the critical stress level is often assumed to be equal to the yielding stress.  

Nevertheless, this information does not help to identify the local buckling point since 

cold-formed steel tubes exhibit an inelastic response maintaining approximately constant 

stress level following yielding.  The effective width approach is useful in obtaining the 

reserve strength of the steel tube against local buckling.  In this approach, assuming a 

stress redistribution along the edges, the portion of the steel tube that is active in resisting 

the applied loading is calculated.  Local buckling is also considered not to create a change 

in the stress-strain response of the steel tube.  However, the effective width approach is 

difficult to adopt in the current research study for two reasons.  First, there exist limited 

effective width studies on cold-formed steel tubes.  Second, in this study, the effect of 

local buckling is accounted for by modifying the stress-strain response through 

introducing a strength degradation region. 

This research study is concerned with determining the strain level at the initiation 

of local buckling so that the stress-strain response can be modified to represent the post-

local buckling behavior of the steel tube.  It is widely accepted that the stress carried by 

the steel tube decreases approximately linearly once the steel tube buckles locally (Tomii 

and Sakino, 1979; Gourley and Hajjar, 1994; Varma 2000).  There are two possible stress 

regions for the steel tube to experience local buckling.  It can buckle elastically before 
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reaching the yield limit or inelastic buckling might take place after the steel tube 

undergoes plastic strains.     

Figure 4.4 illustrates the trend of the ratio of local buckling strain (εlbf) to yield 

strain (εy) with respect to the parameter sy EftD // .  The trend in the data shows that 

ylbf εε / decreases for large values of sy EftD // and Equation 4.3 is proposed to 

calculate ylbf εε /  with an R2 of 0.61.  The data presented in Figure 4.4 is obtained from 

the monotonically loaded column tests available in the literature (Tomii and Sakino, 

1979; Schneider, 1998; Varma 2000). 
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Figure 4.4 Correlation of ylbf εε /  with respect to sy EftD //  
The parameters required to define the stress-strain relation of steel tube after local 

buckling are determined to be the softening slope ( Ks ) and the residual strength ( f rs ) 

(see Figure 4.1).  Both of these parameters were obtained using a similar approach based 

the response of short RCFT columns available in the literature tested under monotonic 

axial load.  Multiple specimens were selected based on material and geometric properties 

of f y , f c
' , and D t/ .  It was ensured that the selected specimens will cover a wide 

spectrum for the aforementioned parameters.  Table 4-2 gives a summary of the material 

and geometric properties of the specimens. 
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Table 4-2 Specimens Selected for Calibration of the Compressive Steel Model 
 

Specimen f y  f c'   D t/  f y  (MPa) f c'  (MPa) D t/  
SC48-46 H2 H H 471.0 110.6 52.3 
CR8-C-9 H H L3 824.0 91.1 27.3 
CR4-3-10 L H H 310.0 119.0 63.1 
CR6-D-2 H L H 618.0 25.4 50.2 

CR8-C-4-3 H L L 824.0 39.1 27.3 
3 L H L 327.0 96.0 15.0 

CR4-D-2 L L H 262.0 25.4 73.7 
S4 L L L 312.0 23.8 22.3 

 

The specimens presented in Table 4-2 all exhibited a clear region of 

approximately constant residual axial strength ( Pres ) toward the end of the test, after 

significant softening following local buckling and concrete crushing.  Utilizing the 

concrete model, for each specimen, the residual axial stress ( f rc ) was calculated.  Then, 

these computationally obtained stress values were multiplied by the areas of the concrete 

core ( Ac ) to calculate the corresponding residual strengths ( Pcres ).  The residual strengths 

of the steel tube ( Psres ) were obtained by subtracting  Pcres  from Pres .  Then, the residual 

axial stress of the steel tube ( f rs ) can be calculated as given Equation 4.4 through 

dividing Psres ( P P Psres res cres= − ) by the area of the steel tube ( As ).  Since no significant 

strain hardening is observed for cold-formed members, the residual axial stress was not 

allowed to exceed the yield strength of the steel tube. 

 f P P A frs res cres s y= − ≤( ) /            [4.4] 

According to Table 4-1, the next parameter to define the stress-strain response of the steel 

tube in compression was the slope of the linear strength degradation response ( Ks ) and it 

was determined by calibrating the computational load-deflection curves of the specimens 

to their experimental response.  The computational load-deflection curve was obtained 

through superimposing the steel and concrete models and Ks  was varied until the error 

                                                 
2 H stands for high 
3 L stand for low 
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between Pexp and Pcomp  axial load values was minimized as shown in Figure 4,5 and 

Figure 4.6.                                                        

( )error
2

1

# of data points

= P P
i xpi

i
comp −

=
∑ e           [4.5] 

  

 

  
 

Figure 4.5 Calibration of Ks with Respect to Axially Loaded Column Tests 
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Figure 4.6 Calibration of Ks with Respect to Axially Loaded Column Tests (cont’d) 

 
After the calibration process was completed, Equations 4.6 and 4.7 were derived 

to estimate Ks  and f rs  values, respectively.  Both Ks and f rs  were related to the 

parameter sy EftD // .  It was found that for large values of sy EftD // , the 

specimens are affected from local buckling and concrete crushing more severely causing 

Ks  to increase and f rs  to decrease.  The comparisons of Equation 4.6 and Equation 4.7 

with the experiments are illustrated in Figure 4.7 and Figure 4.8, respectively.  For both 

of the equations, good correlation was attained with the experimental results. 
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Figure 4.7 Comparison of Experimental and Computational Results for Ks 
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Figure 4.8 Comparison of Experimental and Computational Results for frs 
 

The accuracy of the steel and concrete constitutive model parameters derived in Chapter 

3 and Chapter 4 were tested for axially-loaded RCFT specimens from the literature.  The 

load-deformation response of the specimens was obtained by calculating the stress values 

of the steel tube and the concrete core based on a given strain history.  Then, these stress 

values were converted into axial forces by multiplying them with the corresponding 

cross-sectional areas.  A total number 10 specimens were selected from the experimental 

database by Tort and Hajjar (2003).  The material and geometric properties of the 

specimens are summarized in Table 4-3.  Figure 4.9 and Figure 4.10 illustrate the 

comparison of computational and experimental load-deformation results of the specimens 

in Table 4-3.  A good correlation is evident for all parts of a typical load-deformation 

response including initial stiffness, peak axial load, strength degradation slope, and the 

residual axial strength. 
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Table 4-3 Specimens Selected for Verification of the Compressive Steel and Concrete 
Model 

Specimen fy (MPa) f'c (MPa) D (mm) B (mm) t (mm) L (mm) 
CR8-A-9 825.0 91.1 180.0 180.0 9.45 540 
CR4-D-8 262.0 80.3 324.0 324.0 4.38 972 
CR4-D-4 262.0 41.1 324.0 324.0 4.38 972 

CR4-C-4-1 262.0 41.1 215.0 215.0 4.38 645 
CR8-A-8 835.0 77.0 119.0 119.0 6.47 357 

R2 383.0 26.0 152.8 76.5 4.47 635 
R3 413.0 26.0 152.4 101.8 4.32 635 
S3 322.0 23.8 127.0 127.0 4.55 635 
IIA 339.4 21.4 100.0 100.0 2.20 300 
IIIA 288.4 20.6 100.0 100.0 2.99 300 
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Figure 4.9 Verification of Steel and Concrete Models 
 

 

 
 

Figure 4.10 Verification of Steel and Concrete Models (cont’d) 
 

4.3. Cyclic Response 
 
 The cyclic inelastic response of the steel tube was simulated based on the uniaxial 

bounding surface model proposed by Mizuno et al. (1991).  The stress-strain response 

was formulated in an incremental form.  This approach allowed accurate representation 

of the observed cyclic phenomena in the experiments since the past loading history 

dependence is accounted for comprehensively.   

The total strain increment ( Δ εt ) obtained during the analysis can be decomposed 

into its elastic ( Δ εe ) and plastic ( Δ ε p ) parts as shown in Equation 4.8. 

 Δ Δ Δε ε εt e p= +              [4.8] 

The stress increment ( Δ σ ) is related to the strain increments as given in Equation 4.9. 

 Δ Δσ = εEt t× , Δ Δσ = εEe e× , Δ Δσ = εE p p×         [4.9]  
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Utilizing the relations of Equation 4.9 in Equation 4.8, the tangent modulus ( Et ) is 

expressed in terms of elastic ( Ee ) and plastic modulus ( E p ) as follows:  

 
1 1 1
E E Et e p

= +           [4.10]  

If the stress state is elastic, the tangent modulus is assumed to be equal to the elastic 

modulus.  Therefore, from Equation 4.10, the plastic modulus is taken as infinity if no 

plastic deformation occurs.  Following the initiation of plasticity, the evolution of plastic 

modulus takes place based on the accumulated plastic strain.  A loading surface is 

introduced defining the boundary between elastic and plastic response.  Once the loading 

surface is breached, inelasticity initiates.  The radius of loading surface (κ ) decreases as 

a function of the plastic strain as shown in Equation 4.11.  The reduction of the elastic 

region can be seen schematically in Figure 4.11. 

 
κ
κ

= α ε α ε
ο

− × − × × − − − × − × ×a exp b 100 a 1 exp c 100( ) ( ) ( )p p    [4.11] 

where: κο initial loading surface radius 

 a, b, c material constants 

 ε p effective plastic strain 
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Figure 4.11 Reduction of Radius of the Loading Surface 
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The bounding surface encloses the attainable stress states.  It is assumed to expand as a 

function of the plastic strain until the ultimate tensile strength of the material is reached.  

The cyclic rule defining the expansion of the bounding surface is given in Equation 4.12.   

 κ κ ζρ= + − × −f f eu o u( ) ( )2

         [4.12] 

where: κ - bounding surface radius 

κ o  - initial bounding surface radius 

ζ  - material constant 

ρ - ε p × 05.    

The degree of inelasticity is determined based on the distance between loading and 

bounding surfaces as shown in Figure 4.12.  At high levels of inelastic deformation, the 

rate of decrease in plastic modulus vanishes and the bounding stiffness is preserved.  The 

plastic modulus is defined by the following relation.  

E E hp po
in

= + ×
−

δ
δ δ

                     [4.13] 

where: E po is the slope of the bounding surface 

δ is the distance between the current stress point and the bounding surface 

δin is the initial distance between the current stress point and the bounding surface  

 h e= × +δ f is the shape parameter (e, f are  material constants)  
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Figure 4.12 Bounding Surface Model of Steel Model 
 
 The experimental results exhibit that the slope of the bounding surface does not 

remain constant throughout the loading history.  Mamaghani et al. (1995) assumed that as 

the plastic strain level increases the slope of the bounding surface experiences a reduction 

and approaches to zero asymptotically.  In Equation 4.14, the slope of the bounding 

surface is expressed as a function of the plastic work (W p ). 

 E
E

Wpo
oi
p

p=
+ ×1 ω

          [4.14] 

 where: Eoi
p  is the initial slope of the bounding surface 

  ω is a material constant 

  W p  is the plastic work 

Auxiliary surfaces were introduced to prevent premature reduction of the plastic modulus 

due to the underestimation of the distance between loading and bounding surfaces and 

also the auxiliary surfaces remedies the effect of overshooting due to incorrect updating 

of the plasticity variables following load reversals without plastic excursions in the 

opposite direction.  Memory surfaces are assumed to be located symmetrically in the 

tension and compression regions passing through the point at which the maximum stress 

level is reached throughout the loading history.  A virtual bounding surface becomes 

active when a stress reversal initiates prior to breaching the memory surface.  It is located 

by expanding the current bounding surface by an amount ofδ y , which is obtained as the 

distance between the point of stress reversal and the memory surface.  Once inelastic 

response in the direction of stress reversal is attained, the plastic modulus is obtained 

using Equation 4.14 with respect to the virtual bounding surface as described between 

points A and B shown in Figure 4.13.  Following the breach of the memory surface, the 

plastic modulus evolves with respect to the bounding surface.  Adopting the concept of 

memory and virtual bounding surfaces also provides better predictions for cyclic 

ratcheting and the Bauschinger effect.   

 The material parameters required to develop the steel model are given in Table 

4-4 as reported in Mamaghani et al. (1995).   
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Table 4-4 Steel Model Material Parameters 
 

Parameter f MPay ≤ 357  357 524MPa f MPay< ≤  f MPay ≥ 524  
κ o

yf
 

1.5 1.13 1.06 

a -0.505 -0.528 -0.553 
b 2.17 1.88 6.47 
c 14.4 18.7 34.8 
e 500 316 700 
f

Es
 

0.3 0.484 0.361 

α  0.191 0.217 0.175 
w f y×  3.08 4.0 2.67 

E
E

oi
p

s
 

0.00896 0.0101 0.00785 

ς ε× y
2  0.0000989 0.00152 0.00804 

 
 Despite the comprehensiveness of the cyclic characteristics accounted for by 

Mizuno et al. (1991), as described above, the softening type cyclic response that might 

occur in the steel members was not adequately addressed.  RCFT members with slender 

steel tube sections often have the potential of experiencing local buckling effects.  Local 

buckling manifests itself as a softening type cyclic response, where the strength attained 

by the RCFT member diminishes as the loading progresses.  This type of behavior is 

typical in the RCFT beam-column tests conducted by subjecting the member into 

constant axial load and cyclic shear loading (Sakino and Tomii, 1981; Inai et al., 2004; 

Varma et al., 2002).  In Section 4.1, a formulation was proposed to determine the instant 

of local buckling based on a strain limit.  It was assumed that a strength degradation 

response with negative stiffness takes place following local buckling.  This approach 

works well under monotonically applied loading conditions.  However, under cyclic 

loading schemes, the damage due to local buckling aggregates even if the strain level 

attained by the material fibers is not increased.  Therefore, the model by Mizuno et al. 

(1991) should further be modified so that the cyclic characteristics of the local buckling 
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phenomena can be captured.   

 
Figure 4.13  Memory and Virtual Bounding Surfaces of Steel Model 

 

In the concentrated plasticity model by Hajjar and Gourley (1994), the effect of 

local buckling in the RCFT members was simulated by reducing the bounding surface 

size based-on the accumulated plastic work.  A similar mechanism was also adopted in 

the stress-strain space and Equation 4.15 was derived to represent the reduction in the 

size of the bounding surface, where the bounding surface radius (κ ) was assumed to be a 

linear function of the accumulated plastic work (W p ).  In Equation 4.15, the parameter 

γ cc is introduced as the rate of the bounding surface reduction.     

 ( )κ = − γ κcc
p

oW 1× + ×          [4.15] 

The numerical values of γ cc were determined by studying the cyclic RCFT tests 

available in the literature.  The selected specimens were modeled utilizing the mixed 

finite element formulation introduced in Chapter 2.  The analysis of the specimens was 

conducted for multiple values of γ cc until close agreement between experimental and 

computational results was achieved.  The first specimen to be studied was CIVS3-2 by 

Sakino and Tomii (1981).  It was modeled with 2 elements per member with 3 integration 
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points.  The specimen was subjected to a constant axial load and cyclically-applied shear 

loading putting the member into double curvature.  Figure 4.14 illustrates the 

computational results for γ cc  values of 0.0345, 0.0690 compared to the experimental 

data.  For specimen CIVS3-2, γ cc of 0.0345 shows the best correlation.  The second 

specimen was selected as SR4A4C from the experimental study by Inai et al. (2004).  

The analysis of SR4A4C was conducted with the same mesh density of CIVS3-2 

forγ cc values of 0.0690 and 0.138.  As presented in Figure 4.15, it was found that when 

γ cc is 0.138, the computational results achieves better comparison with the experimental 

results. 
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Figure 4.14 Calibration of γ cc with respect to CIVS3-2 (Sakino and Tomii (1981), Tube: 

100x100x4.21, f y = 295 MPa, f c
' = 24 MPa, L D/ = 6.0, D t./ = 24 ) 

The γ cc values determined for CIVS3-2 and CIVS3-2 were correlated linearly to 

the parameter λcc = ×( / ) /D t f Ey s , which represents the slenderness of the steel tube 

against local buckling.  This process yielded Equation 4.16 to estimate γ cc as a function 

of λcc y sD t f E= ×( / ) / . 

 γ cc = 0 0345.    λcc < 0 92.      [4.16a] 
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 γ λcc cc= × −0196. 0.146  0 92 145. .≤ ≤λcc     [4.16b] 

 γ cc = 0138.    λcc > 145.      [4.16c] 

 Substituting Equation 4.16 into Equation 4.15, the radius of the bounding surface 

can be determined during the cyclic loading history.  Since κ is stated as a decreasing 

function of W p , in order to keep κ bounded, its value was not allowed to be go below 

0 5. κ× o .   
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Figure 4.15 Calibration of γ cc with respect to SR4A4C (Inai et al. (2004), Tube: 

210x210x5.80 mm, f y = 323 MPa, f c
' = 39.2 MPa, L D/ = 6.0, D t./ = 36 ) 

4.3.1. Verification of the Cyclic Response 
 
 In this section the capability of the steel model in predicting the cyclic phenomena 

observed during the tests is presented.  For this purpose, stress-strain response is 

generated under various strain histories including constant stress range, constant strain 

range, symmetric increasing strains, and unsymmetric increasing strains.    

    The stabilization of stress-strain response is evident when the steel fibers are 

subjected to a constant range of strain histories as shown in Figure 4.16.  This type of 
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behavior is attributed to the fact that the bounding and loading surfaces remains constant 

since the effective plastic strain does not increase.     
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Figure 4.16  Steel Model Subjected to Symmetric Constant Strain Cycles 

 
 The next cyclic phenomenon to investigate is the cyclic hardening under 

increasing symmetric strain cycles as shown in Figure 4.17.  The steel model successfully 

predicts the mild increase in the stress as the range of plastic strain increases at each 

subsequent cycle.  The reduction in the bounding stiffness is also evident during the 

applied loading history. 

 The phenomenon of cyclic hardening under increasing unsymmetrical strain 

cycles is illustrated in Figure 4.18.  The steel model produced a realistic simulation in 

predicting the mild increase in the maximum stress level and the reduction in the plastic 

modulus during the loading history.     

Another cyclic phenomenon to emphasize is the cyclic ratcheting, which is also 

known as cyclic creep.  A strain history producing a constant stress range with non-zero 

mean stress was generated for the steel model.  The stress-strain response obtained from 

the analysis exhibited a limited amount of increase in plastic strains due to cyclic 

ratcheting as shown in Figure 4.19.   
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Figure 4.17 Steel Model Subjected to Symmetric Increasing Strain Cycles 
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Figure 4.18 Steel Model Subjected to Symmetric Increasing Strain Cycles 

 
  Two of the coupon tests performed by Mizuno et al. (1991) were simulated with 

the steel model.  The experimental and computational stress-strain responses were 

compared in Figure 4.20 and Figure 4.21.  It can be seen that good correlation was 

achieved with the experimental results under complicated strain histories. 
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Figure 4.19  Steel Model Subjected to Cyclic Ratcheting 
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Figure 4.20 Comparison of Experimental and Computational Results of Steel Coupon 

Specimen SM58E (Mizuno et al. (1991), f y = 524 MPa) 
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Figure 4.21 Comparison of Experimental and Computational Results of Steel Coupon 

Specimen SM58F (Mizuno et al. (1991), f y = 524 MPa) 
 

4.4. Steel Model for Hot-Rolled Steel Girders 
 

The strong column weak-beam design criteria adopted in seismic design leads to a 

significant contribution of steel girders to the structural behavior.  The cruciform RCFT 

frame tests by Koester (2000) and Peng (2001) with split-tee connections also exhibited  

plastic hinging in the steel girders as a main energy dissipation mechanism.  Therefore, 

one of the essential tasks of simulating the response of RCFT frames is to develop an 

accurate material constitutive relation of the cross-section fibers of steel girders framing 

into RCFT columns.   

The common approaches adopted in modeling the stress-strain response of hot-

rolled steel include multi-linear models, bounding surface models and algebraic models 

(White, 1986).  In the multi-linear models, the stress-strain response is represented 

through a set of piece-wise linear functions (Muhummud, 2003; Huang, 2005).  Despite 

the efficiency of these models, it is often required to derive a significant number of state 

variables to capture the material characteristics.  The bounding surface models introduce 

multiple regions in the stress-strain space to define to elastic and inelastic response of the 
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material (Dafalias and Popov, 1976; Cofie and Krawinkler, 1985; Mizuno et al., 1991).  

These surfaces undergo changes in size to represent the main features of the material.  

The bounding surface models do not suffer from extensive conditional statements and 

large number of state variables.  The algebraic models are similar to multilinear models 

in the sense that stress is expressed as an explicit function of strain (Menegotto and Pinto, 

1973; White, 1986).  However, in the case of algebraic models, the function does not 

necessarily have a linear nature.  This approach eliminates the need for large number of 

state variables in multilinear models and produces more accurate simulations since the 

nonlinear stress-strain relations are calibrated with respect to experimental results. 

In this research study, the steel model developed by Mizuno et al. (1991) was 

adopted to simulate the inelasticity of the material fibers in hot-rolled steel girder cross-

sections.  The existing model was augmented by introducing new rules to account for the 

effect local buckling of steel girders. 

4.4.1. Monotonic Response 
 
 Hot-rolled structural steel experiences a linear response until the attainment of 

yield stress.  The linear elastic response is followed by a flat region, which is often 

referred as the yielding plateau.  At high strain levels, the yielding plateau transforms into 

a hardening curve with a nonlinear nature.  The response in tension and compression 

often exhibit identical characteristics.  For the sake of simplicity of the constitutive 

relation, in this research study, the yielding plateau and the hardening curve are not 

modeled.  Instead, it is assumed that the steel undergoes hardening once the yielding 

stress is attained.  Therefore, the typical stress-strain response under monotonic loading 

can be obtained a given in Figure 4.22. 

 Under seismic loading conditions, steel girders experience large deformation 

demands, which might cause local buckling to occur in the flange and/or web of the 

cross-section.  In order to perform realistic evaluation of the seismic performance of 

RCFT frames under large hazard levels, the effect of local buckling is to be modeled.  

The flexural tests on steel girders by Lukey and Adams (1969) and Green et al. (2002) 

indicated that local buckling results in a gradual strength drop in the post-peak region of 
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the load-deformation response.  Therefore, the compression part of the stress-strain 

response given in Figure 4.22 was modified to account for the effect of local buckling.  It 

was assumed that a linear strength degradation region initiates with a negative slope 

of Ksg and it is followed by a constant stress region.  Figure 4.23 illustrates the stress-

strain response accounting for the phenomena of local buckling.  The parameters that are 

required to define the compressive response with local buckling include the strain level at 

initiation of local buckling (εslbf ), Ksg , and the constant stress ( f rsg ) that is maintained 

following the stress degradation region.   

 
Figure 4.22 Monotonic Stress-Strain Response of Hot-Rolled Steel 

 
Experimental tests in the literature were utilized to determine the ranges of values 

of local buckling strain levels and develop equations to relate those limiting strain values 

into geometric and material properties of the steel cross-section.  Lukey and Adams 

(1969) tested steel girders under three-point bending.  The experimental results were 

presented in terms of end-rotation vs. moment plots and the initiation of local buckling 

was clearly reported.  In order to utilize the local buckling data values while developing 

the compressive steel constitutive relation, a computational study was conducted.  

Representative specimens from Lukey and Adams (1969) were analyzed using the 
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mixed-finite element formulation presented in Chapter 2.  As given in Figure 4.24, the 

specimens were modeled using 4 finite elements with 3 integration points.  The support 

conditions were assumed to be pinned and roller.  The analysis was performed under 

displacement-controlled solution scheme by selecting the transverse displacement of the 

node located at the mid-length as the controlling degree-of-freedom (Yang and Kuo, 

1994).  Two types of analyses were performed for the selected specimens.  In the first 

analysis, no local buckling was assumed as shown in Figure 4.22.  It was found that the 

experimental and computational results exhibited good correlation until the initiation of 

local buckling.  Then, from the computational results at the end-rotation value of local 

buckling as reported in the experiments, the strain level at the most stressed steel fiber of 

the cross-section at the mid-node of the steel girder was determined.  The strain level was 

assumed to be the limiting value to initiate local buckling (εslbf ).  In Figure 4.25, the 

summary of the steps to obtain the local buckling strain level can be found.  The second 

type of analysis was conducted multiple times for each selected specimen until close 

agreement is achieved between experimental and computational results for the post-local 

buckling response for a range of assumed Ksg values.  Figure 4.26 and Figure 4.27 

illustrates the calibration of the material model with respect to Ksg  for Specimens B2 and 

B5 by Lukey and Adams (1969).    

 
Figure 4.23 Monotonic Stress-Strain Response of Hot-Rolled Steel with Local Buckling 
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  The specimens by Lukey and Adams (1969) were classified based on a 

slenderness of parameter of λc  expressed in terms of slenderness of flanges ( λ f ) and 

webs ( λw ) as defined below: 

λ f =
b
t

f
Ef

y

s2
, λw =

h
t

f
Ew

y

s
, λ λ λc f w= +2 2     [4.17] 

where:  

 b  - flange width, t f - flange thickness, h - depth of web, tw - thickness of web 

 
Figure 4.24 Computational Modeling of Specimens by Lukey and Adams (1969) 

 

Specimen B2 and B5 by Lukey and Adams (1969) were selected to represent the 

steel cross-sections with low and high slenderness values, respectively.  The geometric 

and material properties of the specimens are presented in Table 4.4, as well as, the 

calibrated values of εslbf  and Ksg .    

Utilizing the data values presented in Table 4-5, Equations 4.18 and 4.19 were 

derived to calculate εslbf  and Ksg as a function of λc . 

 εslbf = − 0 0159.    λc > 1.940     [4.18a] 

ε λslbf = × −1333. c 2.601 1923. ≤ ≤λc 1.940     [4.18b] 

 εslbf = − 0 0384.    λc < 1.923    [4.18c] 

 Ksg = − 1103.2    λc > 1.940     [4.19a] 

Ksg = − × +24513 46450λc  1923. ≤ ≤λc 1.940     [4.19b] 

 Ksg = − 689.5    λc < 1.923    [4.19c] 
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Figure 4.25 Determination of Local Buckling Strain Level for Specimens by Lukey and 

Adams (1969) 
 

Table 4-5 Geometric and Material Properties of Representative Specimens of Low and 
High Slenderness Values 

Specimen d (mm) bf 
(mm) 

tf 
(mm) 

tw 
(mm) 

fyf 
(MPa) 

fyw 
(MPa) λf λw λc εslbf 

Ksg 
(MPa) 

B2 200.2 73.9 5.28 4.445 373.0 396.5 0.302 1.899 1.923 0.0384 689.5 
B5 200.2 96.8 5.28 4.445 373.0 396.5 0.396 1.899 1.940 0.0159 1103.2 
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Figure 4.26 Calibration of Ksg for Specimen B2 (Lukey and Adams, 1969) 

 

 In the steel material model, the constant stress attained at high strain levels ( f rsg ) 

was assumed to be 50% of the yield stress of the steel cross-section.   

 f rsg = ×05. f y            [4.20] 

 The limiting value of f rsg in Equation 4.20 was also found to be consistent with three-

dimensional continuum analysis studies by Huang (2005) on steel girders under flexural 

loading.  Figure 4.28 shows the comparison of Equation 4.17 with the f rsg values 

suggested by Huang (2005) for flanges of steel girders across a range of steel cross-

section sizes. 
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Figure 4.27 Calibration of Ksg for Specimen B5 (Lukey and Adams, 1969) 

 
Figure 4.28 Comparison of f rsg = ×05. f y with the results from Huang (2005) 
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4.4.2. Cyclic Response 
 
 Structural steel sections are often known for their stable hysteresis response under 

cyclic loading as it is shown in Figure 4.29 (a).  This feature makes them ideal for 

seismic applications since they contribute to the energy dissipation mechanism 

significantly.  However, undesirable types of behavior associated with strength and 

stiffness degradation might also occur.  Steel beams can be subjected to fracture due to 

local imperfections coupled with high stress and strain levels.  This leads to a sudden 

deterioration of the cyclic response as can be seen in Figure 4.29 (b) (Gupta and 

Krawinkler, 1999).  Moreover, steel members with slender cross-sections are susceptible 

to the local buckling phenomena, which results in stiffness and strength degradation in a 

gradual manner as cyclic loading is being applied (see Figure 4.29 (c)).  Despite the strict 

compactness checks provided by the design provisions, local buckling might still take 

place under high seismic forces, which need to be considered for low-level performance 

objectives like Collapse Prevention.  This requires developing an analysis tool that is 

capable of simulating the structural response following local buckling. 

 In the previous section, a computational model was developed to estimate the 

strain level at initiation of local buckling and the slope of the strength degradation 

response was also determined.  However, it is not sufficient to examine the structural 

response under seismic forces since the effect of local buckling considering the cyclic 

deterioration effects was not addressed.  The gradual increase in damage due to local 

buckling makes the accumulated plastic work a parameter that needs special attention to 

model local buckling.  The bounding surface model by Mizuno et al. (1991) was 

modified assuming that the radius of the bounding surface decreases in size as function of 

accumulated plastic work (W p ) once local buckling takes place.  The expression adopted 

to realize this idea is given in Equation 4.21, where the parameter γ  represents the rate 

of reduction in the radius of bounding surface radius (κ ).  In Equation 4.21, κ remains 

unbounded unless a limiting value to be maintained is specified for large values of W p .  

Following the same approach in deriving f rsg in Equation 4.17, κ was not allowed to 

attain values less than 50% of its initial value as described in Figure 4.30. 
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 ( )κ = γ κ× + ×W 1p
o          [4.21] 

 
Figure 4.29 Cyclic Response of Structural Steel (Krawinkler et al., 1983) 

 
The steel girder tests performed by Bertero et al. (1996) were utilized to calibrate 

numerical values forγ .  The experiments consisted of W shape steel girder and steel 

column subassemblies, where the steel girder is tested under cyclic tip loadings as shown 

in Figure 4.31.  A computational model of the test-setup was prepared using the mixed 

finite element formulation developed in Chapter 2.  The column (W24x76) was defined 

with 4 finite elements while the girder (W30x99) was modeled with 3 elements per 

member.  The number of integration points was selected as 3.  The analysis was 

conducted for multiple values of γ  including 0.0345, 0.0690, and 0.138 MPa.  The 

comparison of experimental and computational results indicated that γ  of 0.0690 gives 

the best correlation with the experimental results as can be seen in Figure 4.32.    

 
Figure 4.30 Evolution of Bounding Surface Radius as a Function of Accumulated Plastic 
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3.4 m 
3.

5 
m

 

W24x76 

W30x99 

Flange Web Section 
fy (MPa) fu (MPa) fy (MPa) fu (MPa) 

W30x99 335  489 395 503 
W24x76 335 475 3689 488 

 
 

Figure 4.31 Test Setup for EERC-RN2 (Bertero et al., 1996) 
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Figure 4.32 Calibration of γ with respect to EERC-RN2 (Bertero et al., 1996) 
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Chapter 5 
 

5. Verification of the Mixed Finite Element 
Formulation 

 
5.1. Introduction 
 

Numerical implementation results of the mixed fiber-based beam-column element 

are documented in this chapter.  It is aimed to provide comprehensive analysis results to 

investigate the accuracy of the formulation. Various types of RCFT members were 

analyzed with different loading types and boundary conditions.  The accuracy of the 

analysis is decided based on the comparisons of computational results with analytical 

solutions and experimental results where available.  The comparisons are performed not 

only at the load-deformation level but also at the cross-section and stress-strain level.  

While analyzing frame type of structures, the vertical members are modeled using the 

mixed RCFT beam-column element.  An equivalent mixed steel beam-column element is 

utilized to simulate the horizontal members and additional verification studies are also 

provided to evaluate its accuracy.  

 The first verification set is prepared for geometrically nonlinear elastic problems.  

In these problems, the formation of slip is prevented since there exist no analytical 

solution available in the literature to compare to if the steel tube and the concrete core 

experience differential displacement.  The cross-sectional stiffness values are hard-coded 

into the analysis program and they are shared equally between the two media.  This 

approach is adopted for convenience.  The analysis results did not exhibit any variation 

with respect to the proportion of cross-sectional stiffnesses assigned to the steel tube and 

the concrete core.   

 A total number of 6 verification sets are prepared for geometrically and materially 

nonlinear static problems of RCFTs.  The RCFT specimens to be analyzed are selected 

from the experimental database by Tort and Hajjar (2003).  The specimens to be used for 
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verification are grouped with respect to the loading schemes as slip critical, axially 

loaded, pure-bending, proportionally-loaded, non-proportionally loaded, and cyclically 

loaded.  The verification study for steel girders consists of pure bending tests under 

monotonic and cyclic loading schemes. 

 In the case of dynamic problems, two verification sets are provided.  The first set 

contains geometrically nonlinear elastic type damped and undamped problems.  A plane 

frame test performed at the University of Lehigh by Herrera (2005) was analyzed to 

verify the fully-nonlinear dynamic analysis feature of the formulation. 

 

5.2. Geometrically Nonlinear Elastic Problems 
 

5.2.1. Euler Buckling of a Simply Supported RCFT Column 
 

 The ability of the mixed finite element formulation in producing the Euler 

buckling load is studied by analyzing a simply supported column as shown in Figure 5.1.  

The column is assumed to be perfectly straight without any imperfections.  A linearly 

increasing concentric axial load is applied.  The critical load of the column ( )Pcr  is 

calculated using the formula given in Equation 5.1 assuming an effective length factor 

( K ) of 1. 

 
( )

P
EI

KLcr =
π 2

2          [5.1]  

  
Figure 5.1 Buckling of a Simply Supported RCFT Column 
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Buckling of the column is decided when the minimum-eigen value of the global 

stiffness matrix becomes negative.  The analysis is performed using 1, 3, and 5 elements 

per member.  As it is portrayed in Figure 5.2, the discrepancy between the theoretical and 

computational results diminishes significantly as the number elements increases.  The 

effect of the number of integration points on the analysis results is studied by using 3 and 

5 integration points per element.  However, the variation in the results is found to be 

insignificant.  In Figure 5.2, the analysis results are reported when 5 gauss points are 

introduced.  Schiller and Hajjar (1998) previously studied the same problem using a 

mixed-based finite element formulation and the current buckling load predications are 

found to be compatible with those obtained by Schiller and Hajjar (1998). 
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Figure 5.2 Buckling of a Simply Supported RCFT Column 

 

5.2.2. Elastic Stability of a Cantilever Column 
 
 The cantilever column shown in Figure 5.3 is subjected to a linearly increasing 

concentric axial load.  The theoretical buckling load (Pcr) is calculated as 2210 kN using 

Equation 5.1 with a K  factor of 2.  The analysis results are presented for a constant axial 

load increment of 2.2 kN.  The cantilever column is analyzed using 1, 3, and 5 elements 

along its length.  The number of integration points is also varied as 4 and 6.  It is found 

that even with a single element, excellent correlation with the theoretical buckling load is 

attained.  The change in the number of gauss points does not affect the accuracy of the 

results.  However, increasing the number of elements produced slightly improved the 

correlation with the theory. 
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Figure 5.3 Buckling of Cantilever RCFT Column 
 

Table 5-1 Analysis Results for Cantilever RCFT Column with Axial Load 
 

Number of 
Elements 

Number of 
Gauss Points

Load Step 
Size 

Pcr  (kN) Error (%) 

1 4 0.001 2212.9 0.131 
1 6 0.001 2212.9 0.131 
3 4 0.001 2210.6 0.027 
3 6 0.001 2210.6 0.027 
5 4 0.001 2210.6 0.027 
5 6 0.001 2210.6 0.027 

 

5.2.3. RCFT Cantilever Under Pure Bending 
 
 The problem presented in Figure 5.4 is a cantilever subjected to linearly 

increasing end moment.  This problem is selected to test the performance of the mixed 

finite element formulation under large displacements, large rotations, and small strains.   

 
Figure 5.4 Cantilever RCFT Column under Pure Bending 

A constant moment increment of 0.71 kN.m is applied until the cantilever is fully 

wrapped around the support as it is illustrated in Figure 5.6.  The analytical solution of 
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the problem can be found in Morales (1994).  The analysis is performed using 3, 5, and 

10 finite elements per member.  Figure 5.5 shows that a good correlation can be obtained 

between analytical and computational results if the number of finite elements is more 

than 3.  The number of integration points was found not to have a significant effect on the 

accuracy of the results.  Therefore, in Figure 5.5, the analysis results are presented when 

4 integration points per member are used.   

 
 

Figure 5.5 Analysis Results for RCFT Cantilever under Pure Bending 
 

 
 

Figure 5.6 Displaced Shape of RCFT Cantilever under Pure Bending 
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5.2.4. RCFT Cantilever Under Transverse Tip Loading 
 

An RCFT cantilever subjected to a transverse tip loading as shown in Figure 5.7 

is analyzed.  The cantilever undergoes large displacements and rotations causing 

significant axial elongation.  This problem helps to investigate the performance of the 

mixed finite element formulation in simulating a tension stiffening type of geometrically 

nonlinear behavior. 

The analysis results are compared to the analytical solution given by Mattiasson 

(1981).  A constant shear force increment of 0.04448 kN is applied until the transverse 

displacement reaches 81% of the undeformed length of the RCFT cantilever.   

The analysis is conducted using 3, 5, and 10 finite elements per member.  The 

number of integration points is kept as 4 since it was observed that the analysis results did 

not exhibit significant variation with respect to the number of integration points.  As it is 

portrayed in Figure 5.8, good correlation is achieved between the analytical and 

computational results.  It is found that increasing the number of elements improved the 

accuracy of the transverse displacements.  On the other hand, the degree correlation of 

the axial displacements is very good irrespective of the size of the finite element mesh.  

The displaced shape of the cantilever at intervals of 10% of the total applied load can be 

seen in Figure 5.9. 

 

  
 

Figure 5.7 RCFT Cantilever under Transverse Tip Loading 
 

5.2.5. Harrison’s Portal Frame 
 
 A rectangular portal frame is modeled using two RCFT columns and a steel 

girder.  As defined in Figure 5.10, the portal frame is subjected to two vertical loads and a 
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lateral load.  The RCFT columns and the steel girder are modeled using 3 elements per 

member with 4 integration points.  The analysis is conducted by applying the lateral force 

in 100 load steps and it was determined that reducing the load increments did not produce 

significant changes in the final response of the frame.      
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Figure 5.8 Load-Deflection Response of RCFT Cantilever under Transverse Tip Loading 
 

 
Figure 5.9 Displaced Shape of RCFT Cantilever under Transverse Tip Loading 
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al. (1993) in Table 5-2.  It is found that good correlation is obtained with respect to both 

displacements and forces.  The error increases as the lateral load attains its final value.   

 The discrepancy of displacements from the stability function results is larger than 

that of the maximum moment values.  The largest error for displacements is found to be 

2.30 % while a 0.25% error is obtained as the largest error for the maximum moment  

values.  The load-deflection response of the portal frame is shown in Figure 5.11, where 

the good correlation between mixed finite element and stability function results is 

evident.      

5.2.6. Right-Angled Simply Supported Frame  
 

The next benchmark problem for geometrically nonlinear elastic analysis is 

selected as the right-angled simply supported frame by Lee et al. (1968).  This problem is 

analyzed numerically by several researchers in the past including Nukala (1997), Souza 

(2000), and Alemdar and White (2005).  The motivation in investigating the right-angled 

frame is to assess the performance of the mixed finite element formulation when 

RCFT beam-columns and steel girders are used together in a frame.  The accuracy of the 

results shows the quality of the transformation relations between corotational and global 

coordinates.  In addition, with this problem, it is possible to test how accurately the  

mixed finite element formulation handles large rotations and elongations in the 

corotational frame.  

As it is introduced in Figure 5.12, the vertical member is defined as an 18 DOF 

RCFT column while the horizontal member is simulated as a 12 DOF steel girder.  The 

support conditions are assumed to be pinned.  Two types of discretization schemes are 

employed including 3 and 5 elements per member.  The analysis is conducted using the 

generalized displacement control algorithm proposed by Yang and Kuo (1994).  The 

magnitude of the reference load vector is selected as 80064 kN and the initial load factor 

is assumed to be 0.01. 
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Figure 5.10 Harrison’s Portal Frame 
 

Table 5-2 Analysis Results for Harrison’s Portal Frame 
 

Stability 
Function 

Finite 
Element 

Stability 
Function 

Finite 
Element 

V (kN) Sway 
(mm) 

Sway 
(mm) 

Error 
(%) Mmax 

(kN.m) 
Mmax 

(kN.m) 

Error 
(%) 

44.48 7.16 7.16 0.0 69.04 68.96 0.12 
88.96 18.34 18.37 0.16 139.44 139.24 0.14 
133.44 37.06 37.20 0.38 211.54 211.14 0.19 
177.92 74.02 74.64 0.84 286.34 285.64 0.25 
222.4 184.18 188.41 2.30 368.83 367.90 0.25 
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Figure 5.11 Load-Deflection Response of Harrison’s Portal Frame 
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The analysis results are illustrated for the vertical and horizontal displacements of 

the node where the transverse force is being applied.  As it is shown in Figure 5.13, the 

complete load-path is simulated and a good agreement is obtained between the 

computational and analytical results.  The buckling load of the frame is determined to be 

84293.0 kN, which is comparable to the critical load of 82699.4 kN reported by Alemdar 

and White (2005).   

 

 
Figure 5.12  Right-Angled Simply Supported Frame 

 

-60000

-40000

-20000

0

20000

40000

60000

80000

100000

120000

0 0.2 0.4 0.6 0.8 1

Normalized Displacement

Sh
ea

r F
or

ce
 (k

N
)

Theory
Theory
6 elements
6 elements
10 elements
10 elements

 
Figure 5.13 Load-Deflection Response of Hinged Right-Angle Frame 
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In Figure 5.14, the deformed shape of the frame is presented at equal time 

intervals until the end of the analysis.  The buckled shapes in Figure 5.14 illustrate the 

severity of geometric nonlinearity involving large rotations and elongations. 
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Figure 5.14 Displaced Shape of Right Angled Simply Supported Frame 

 

5.1.7  Post-Buckling Response Axially Loaded RCFT Cantilever 
 
 The post-buckling response of an RCFT cantilever is investigated as described in 

Figure 5.15.  A small bending moment is introduced at the free end of the cantilever 

creating a perturbation.  The analyses are performed using 3, 5, and 10 elements per 

member.  The number of integration points is kept as 4.          

 

 
 

Figure 5.15 Axially Loaded RCFT Cantilever 
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 The analysis results are compared to the analytical solution given in Southwell 

(1941).  As it is illustrated in Figure 5.16, the mixed finite element formulation produced 

accurate simulations compared to the analytical results.  An increase in the correlation 

can be noticed as the finite element discretization gets finer. 
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Figure 5.16 Load Deformation Response of Axially Loaded RCFT Cantilever 
 

5.3. Geometrically and Materially Nonlinear Problems 
 

5.3.1. Slip Critical Materially and Geometrically Nonlinear Problems 
 
 The majority of the computational studies to date on analysis of RCFT columns 

do not simulate the load transfer mechanism between the steel tube and the concrete core.  

It is usually assumed that strain compatibility is strictly satisfied, especially, if line 

elements are utilized in the analysis.  Using this approach, the studies conducted by 

Gourley and Hajjar (1994) and Huang (2005) produced accurate simulations of 

experimental specimens and frame structures.  However, both of the aforementioned 

studies focused on structures having steel girders attached to RCFT columns via moment 

connections, where initiation of slip is not expected.  On the other hand, in the case of 

gravity or braced frames, steel girders may be attached to RCFT columns without 
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penetrating into the concrete core by means of connection components welded to the steel 

tube such as fin-plates and tee cleats (Shakir-Khalil and Mahmoud, 1995).  In the RCFT 

frames of this sort, the gravity and live loads are first transferred to the girders, then from 

girders to the steel tubes, and finally to the concrete core through the interface.  Since the 

interface is stressed to ensure the load transfer, strain compatibility may not be satisfied 

causing the formation of differential axial deformation, which is referred as slip 

throughout the text.     

 As described in the preceding sections, Hajjar et al. (1998a, 1998b) developed a 

fiber-based finite element formulation allowing the force exchange between the steel tube 

and the concrete core.  The constitutive relationship of the interface was represented 

through a nonlinear constitutive rule as given in Figure 5.17.  The interface possesses a 

very high initial stiffness ( ksc ) until the attainment of the bond strength ( f sc ).  Following 

the breachment of the bond strength, the stress level is maintained with a mild stiffness 

without any deterioration.  The tests conducted to examine the cyclic response of the steel 

and concrete interface indicated that repeated stress-reversals do not have a significant 

detrimental effect of the bond strength and stiffness (Morishita et al., 1979a, 1979b; 

Shakir-Khalil 1993a, 1993b).  Therefore, the unloading and reloading stiffnesses of the 

interface are taken as equal to its initial values exhibiting a cyclic bond stress vs. slip 

relation as presented in Figure 5.17.     

 Implementing the nonlinear slip vs. bond stress relationship in a finite element 

formulation requires the calibration of the bond strength and stiffness values.  This can be 

achieved through studying the RCFT experiments in the literature and analyzing the 

information related to the slip behavior.  Hajjar et al. (1998a, 1998b) reviewed the push-

out experiments in the literature and identified two types of push-out tests depending on 

the nature of the loading scheme as concrete-loaded and steel-loaded.  The concrete-

loaded tests were performed by introducing different boundary conditions as shown in 

Figure 5.18.  
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Figure 5.17 Constitutive Rule of Steel and Concrete Interface 
 

 
 

Figure 5.18 Experimental Setup of Push-out Tests 
 

Virdi and Dowling (1980), Shakir-Khalil (1993a, 1993b), and Roeder et al. (1999) 

tested RCFT columns under concentric axial loading where the concrete core was loaded 

alone while the specimen was resting on the steel tube at the bottom.  Morishita et al. 

(1979a, b) conducted push-out tests by loading the steel tube alone at the top while the 

RCFT specimen was supported on the steel tube and the concrete core simultaneously at 

the bottom.  The main purpose of the push-out tests is to study the range of bond  

strength and also to identify the factors affecting its limiting values.  In Figure 5.19, the 

bond strength values from the concrete-core loaded push-out tests by Shakir-Khalil 
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(1993a, 1993b) and Shakir-Khalil and Hassan (1994) are plotted with respect to the 

compressive strength of concrete.  Only the specimens without any shear connectors 

inside the steel tube are considered.  The bond strength values exhibit a large variation 

ranging from 0.15 MPa to 0.75 MPa.   

The same trend can also be observed in Figure 5.20 when the axial load is applied 

on to the steel tube.  Figure 5.20 was generated using the experimental data by Morishita 

et al. (1979a, 1979b), where the inside surfaces of the steel tubes were free of any shear 

connectors.  The bond strength values are smaller compared to the results from the 

concrete core loaded type push-out tests.  The minimum and maximum bond strength 

values are 0.13 MPa and 0.36 MPa, respectively. 
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Figure 5.19 Variation of Bond Strength wrt. Compressive Strength of Concrete 
 

To calibrate and verify bond strength and stiffness values, Hajjar et al. (1998a, 

1998b) utilized connection tests in the literature, where RCFT columns are framed by 

steel girders using simple connection types.  Transverse loading is applied to the steel 

girders while the axial load on the RCFT column is also increased.  This loading scheme 

is considered to be a rational approach to investigate the load-transfer mechanism and to 

evaluate its characteristics.  Based on parametric studies on connection tests, Hajjar et al. 

(1998a, 1998b) recommended a bond strength value of 0.6 MPa and an interface stiffness 

of 104 MPa.  The same values were also adopted in the current study to test the ability of 

mixed finite element formulation in simulating the force exchange between the steel tube 

and the concrete core.  Representative connection tests from Shakir-Khalil (1994) and 
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Dunberry et al. (1987) were analyzed to assess the performance of the proposed finite 

element formulation. 

The test setup by Shakir-Khalil (1994) for specimen E6 is shown in Figure 5.21.  

The steel girders are attached to the RCFT column using tee-cleat type simple 

connections.  Axial load on the column and transverse force applied to the girders are 

increased proportionally, where the direction of loading is upwards.  The compatibility of 

the axial strains at the end of the RCFT column is ensured via applying the load to the 

composite cross-section uniformly.  Shakir-Khalil (1994) provided strain data of the steel 

tube before material inelasticity takes place at the connection region.  This allows 

investigating the load transfer mechanism more reliably since the strain profile of the 

steel tube is directly attributed to the interaction taking place at the interface.  Due to the 

lack of any slip measurement, the experimental tests by Shakir-Khalil (1994) were 

considered to be appropriate for investigating the ranges of slip stiffness values.  The 

RCFT column was modeled using a total number of 11 elements to ensure a sufficient 

resolution in comparing the results, and 4 integration points were introduced for each 

finite element.  As defined in Figure 5.21, the transverse loading was assumed to be 

applied at three locations by introducing a load distribution of 25%-50%-25% at the 

bottom, middle, and top points of the connection region, respectively.   

The comparison of the experimental and computational strain profile along the 

length of the RCFT column can be seen in Figure 5.22 at a load level 600 kN.  Three sets 

of analysis were conducted.  In each of the analyses, the stiffness of the interface was 

assumed to have a different value including 103 MPa, 104 MPa, and 106 MPa.  The 

computational results exhibited a good correlation with the experimental strain profile.  

An error analysis of the results is presented in Table 5-3.  The average error for each 

analysis case is not more than 6%.  The least amount error was obtained when the 

interface stiffness was set to 106 MPa. 

The analysis of Specimen E6 by Shakir-Khalil (1994) was also conducted until an 

axial load level of 800 kN.  Three cases were studied by varying the initial stiffness of the 

interface (i.e., prior to breaching of the bond strength) as 103 MPa, 104 MPa, and 106 

MPa.  Figure 5.23 illustrates the comparison of computational and experimental results 
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for the strain distribution in the steel tube.  The reported strain data is well predicted by 

the computational results.  The comparisons below the connection region are found to be 

better than those above the connection region.  This trend is valid for each value of the 

interface stiffness.  In Table 5-4, the error analysis of the computational results is 

presented.  It is found that the interface stiffness of 106 MPa produced the lowest value of 

average error and standard deviation.  The length of the load transfer region is over 

predicted when lower values are introduced for the stiffness of the interface. 
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Figure 5.20 Variation of Bond Strength wrt. Compressive Strength of Concrete 

 

 
Figure 5.21 Simple Connection Tests Setup by Shakir-Khalil (1994) 
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Figure 5.22 Axial Strain Distribution of the Steel Tube at 600 kN (Specimen E6, Shakir-

Khalil, 1994) 

 
Table 5-3 Error Analysis of Strain Distribution of the Steel Tube at 600 kN (Specimen 

E6, Shakir-Khalil, 1994) 

 
Error (%) 

Strain Gauge 
k MPasc = 106  k MPasc = 104  k MPasc = 103  

1 1.28 2.03 8.94 
2 -4.14 -0.42 7.23 
3 -9.35 -4.15 2.71 
4 3.57 6.43 12.65 
5 39.60 45.02 45.58 
6 19.95 17.30 11.57 
7 6.53 0.87 -4.95 
8 -1.71 -4.43 -10.13 
9 -1.77 -2.75 -8.08 

10 -1.77 -2.17 -6.59 
Average 5.22 5.77 5.89 
Std. Dev 14.40 15.23 16.33 
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Figure 5.23 Axial Strain Distribution of the Steel Tube at 800 kN (Specimen E6, Shakir-

Khalil, 1994) 

 
Table 5-4 Error Analysis of Strain Distribution of the Steel Tube at 800 kN 

(Specimen E6, Shakir-Khalil, 1994) 

Error (%) 
Strain Gauge 

k MPasc = 106  k MPasc = 104  k MPasc = 103  

1 1.28 2.03 8.94 
2 -4.14 -0.42 7.23 
3 -9.35 -4.15 2.71 
4 3.57 6.43 12.65 
5 39.60 45.02 45.58 
6 19.95 17.30 11.57 
7 6.53 0.87 -4.95 
8 -1.71 -4.43 -10.13 
9 -1.77 -2.75 -8.08 

10 -1.77 -2.17 -6.59 
Average 2.34 2.87 3.07 
Std. Dev 15.45 16.37 18.05 

 

Specimen E8 by Shakir-Khalil (1994) was tested using the experimental test setup 

shown in Figure 5.21.  The analysis model was constructed similar to the specimen E6 by 
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defining 11 finite elements with 4 integration points.  The load distribution at the 

connection region was also selected as 25%-50%-25% at the bottom, middle, and top 

points, respectively.  The material strengths for the specimen E8 were designed to have 

slightly higher concrete strengths than specimen E6 with f c' .= 32 5MPa  and 

Ec = 36 7. GPa .  The other nominal material and geometric properties of the specimen E6 

and E8 are identical.  The strain distribution of the steel tube for specimen E8 is exhibited 

in Figure 5.24.  Due to the limited published data, the comparisons can only be seen for 

three strain readings.  The correlation of strain values is not satisfactory at the connection 

region.  However, the strain value away from the connection is well predicted with a 

maximum error value of 13%, which is obtained with the lowest interface stiffness.  In 

addition, the rate of load transfer matches with the experimental observations. The error 

analysis of the results for the specimen E8 in Table 5.5 shows that the lowest average 

value of error is obtained when the stiffness of the interface is 106 MPa.   
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Figure 5.24 Axial Strain Distribution of the Steel Tube at 600 kN (Specimen E8, Shakir-

Khalil, 1994) 
 

Hajjar et al. (1998a, 1998b) performed verification and calibration studies on the 

bond strength using the connection tests conducted by Dunberry et al. (1987), where tee 

cleat type simple connections were utilized.  The RCFT column is subjected to 

proportional axial loading at the top and also around the mid-height as it is demonstrated 
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in Figure 5.25.  The element ends are capped ensuring strain compatibility of the steel 

tube and the concrete core.  Specimen D1 tested by Dunberry et al. (1987) is analyzed 

using 10 finite elements and 4 integration points within each element.  The force 

distribution over the connection region is assumed to be 20-20-60 % at the top, middle 

and bottom locations, respectively.  The initial stiffness of the interface is assumed to be 

104 MPa.  The analysis is conducted for different values of bond strength including 0.4 

MPa, 0.6 MPa, and 0.8 MPa.  In Figure 5.26, the computational and experimental slip 

values along the length of the RCFT column are presented.  The slip distribution from the 

analysis well matches with the measured values.  A better correlation of the slip values is 

obtained below the connection region compared to the region above the connection.  A 

similar trend was also noticed by Hajjar et al. (1998a, 1998b). 

 
Table 5-5 Error Analysis of Strain Distribution of the Steel Tube at 600 kN (Specimen 

E8, Shakir-Khalil, 1994) 

 
Error (%) 

Strain Gauge 
k MPasc = 106  k MPasc = 104  k MPasc = 103  

1 5.32 6.11 13.33 
2 -27.09 -24.39 -18.56 
3 -32.65 -28.79 -23.75 

Average 12.44 15.73 24.08 
Std. Dev. 28.16 26.10 27.41 

 

The error analysis of the slip results is given in Table 5-6.  In the regions away 

from the connection, very high error values are obtained.  This is attributed to the fact 

that the reported slip values in the experiments are very small compared to the 

computational results.  However, the maximum slip values produced a better correlation 

as can be seen in Table 5-6.  Based on Figure 5.26, the maximum slip is predicted more 

accurately if the bond strength is assumed as 0.6 MPa.  
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Figure 5.25 Simple Connection Tests Setup (Dunberry et al., 1987, Specimen D1) 
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Figure 5.26 Slip Distribution (Dunberry et al., 1987, Specimen D1) 

 
 

Dunberry et al. (1987) also reported axial force distribution in the steel tube and 

the concrete core along the element length.  This data provided valuable comparisons to 

monitor the accuracy of load exchange estimated by the mixed finite element 

formulation.  The comparison of the axial force distribution for specimen D1 is illustrated 

in Figure 5.27.  Since the axial force is directly applied to the steel tube DOFs, in Figure 

5.27, abrupt increase in the axial force of the steel tube is evident at the load application 

points.  On the other hand, the concrete core experiences a gradual growth of the axial 
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load since it is transferred through the interface.  The general trend of the force 

distribution reveals a good correlation with the published results for every bond strength 

value.  The numerical values of the axial loads match with the reported values better 

above the connection region compared to the portion of the element length below the 

connection.  The error analysis of the axial load distribution can be found in Table 5-7.  

The axial load estimations of the steel tube produced more accurate results compared to 

the concrete core.  The best correlation is obtained when the bond strength value is set to 

0.8 MPa. 

Table 5-6 Error Analysis of Slip Value (Dunberry, 1987, Specimen D1) 
 

Error (%) Location (mm) 

0.4 MPa 0.6 MPa 0.8 MPa 
815.34 522.7 139.3 77.5 
919.48 346.3 91.9 42.6 

1049.02 76.2 6.9 -14.3 
1229.36 145.2 16.4 -11.2 
1409.7 1184.2 485.1 419.4 

Average Error  454.9 147.9 102.8 
Std. Dev. 443.7 196.3 181.1 

 

 
Figure 5.27 Axial Force Distribution (Dunberry et al., 1987, Specimen D1) 
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The analysis results of slip critical RCFT columns indicated that a slip stiffness of 

106 MPa and a bond strength of 0.8 MPa produced the best correlation with the 

experimental results with lower values of average error and standard deviation for the 

majority of specimens.  However, the degree of correlation achieved by 106 MPa slip 

stiffness and 0.6 MPa bond strength is not significantly different than it was achieved by 

the aforementioned values.  For the sake of consistency with the prior work by Hajjar et 

al. (1998a, 1998b), in this research study, 106 MPa slip stiffness and 0.6 MPa bond 

strength were utilized in the analysis results.      

 
Table 5-7 Error Analysis of Axial Load (Dunberry, 1987, Specimen D1) 

 

Specimen C1 by Dunberry et al. (1987) was selected to verify the accuracy of the 

selecte slip stiffness and bond strength values.  The test was performed using the 

experimental setup described in Figure 5.28.  The axial load was applied through tee- 

cleat type connections at the mid-height of the RCFT column.  The top of the specimen 

was left uncapped allowing the steel tube to slip with respect to the concrete core.  The 

analysis of the Specimen C1 was conducted by defining 7 elements per member with 4 

integration points.  The fine mesh was selected to provide consistency with the location 

of the strain gauges used in the experiment.  The bond strength and stiffness of the 

interface are assumed to be 0.6 MPa and 104 MPa as recommended by Schiller and Hajjar 

Concrete Core - Error (%) Steel Tube - Error (%) Location 

(mm) 0.4 MPa 0.6 MPa 0.8 MPa 0.4 MPa 0.6 MPa 0.8 MPa 
0 9.4 9.4 9.4 -3.7 -3.8 -3.6 

707 8.7 7.6 8.9 -3.3 -2.8 -3.4 
804 6.2 0.8 7.3 -2.5 0.4 -2.7 
902 6.1 0.1 8.9 -3.7 0.7 -3.2 
989 6.4 2.3 9.4 -3.7 0.8 -2.1 
1043 4.3 1.6 6.6 5.9 11.4 9.3 
1413 -12.4 -3.2 -16.6 12.7 -13.0 -4.4 
1500 16.6 32.5 13.6 12.1 -17.5 -6.4 
1543 13.3 28.1 11.1 23.5 -14.9 -4.9 
1696 7.0 13.8 6.2 -8.0 -6.5 -2.1 
2000 4.2 5.0 4.1 -5.6 -1.4 -0.9 

Average 6.4 8.9 6.3 2.2 -4.2 -2.2 
Std. Devi. 7.3 11.6 8.0 10.0 8.4 4.1 
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(1998) and Hajjar et al. (1998a, 1998b).  Figure 5.29 illustrates the axial force distribution 

in the concrete core along the length of the specimen.  The gradual transfer of axial load 

to the concrete core is evident starting at the top of the specimen.  In general, a good 

correlation is attained between the computational and experimental axial load values of 

the concrete core.  The axial force estimations above the connection region were found to 

be more satisfactory compared to region above the connection.  The largest error in the 

estimations is obtained as 5.9%.   

 

 
 

Figure 5.28 Simple Connection Tests Setup (Dunberry et al., 1987, Specimen C1) 
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compression provide significant insights into the interaction of the steel tube and the 

concrete core.  The load-deformation behavior is significantly affected by the 

confinement effects resulting from the passive lateral pressure exerted on to the concrete 

core from the steel tube.  In addition, expansion of the concrete core due to crushing 

accelerates the formation of local buckling on the steel tube walls.  Since the severity of 

confinement and local buckling effects is significant under uniaxial compression, 
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studying short RCFT columns helps calibrating and verifying the analysis models to 

account for these two phenomena.  The RCFT columns that are examined in this section 

experience negligible geometric nonlinearity due their low slenderness ratio.  However, 

in the analysis, the geometric nonlinear features of the finite element formulation were 

not suppressed for the sake of consistency in the breadth of the analysis method. 
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Figure 5.29 Simple Connection Tests Setup (Dunberry et al., 1987, Specimen C1) 
 

 
Figure 5.30 Short RCFT Columns under Concentric Axial Loading 

 
 The first specimen studied is CR4-D-2 tested by Nakahara et al. (1998).  It is 

found to experience the typical limit states observed in RCFT stub column experiments 

including steel tube yielding, concrete crushing, and local buckling of the steel tube.  

Therefore, it is selected for investigating the mesh sensitivity of the results.  A 

displacement-controlled load incrementation scheme is employed in the analyses (Yang 

RCFT columnRCFT column
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and Kuo, 1994).  Six discretization schemes are studied.  1, 2, and 3 elements per 

member are used while the number of integration points is selected as 4 and 6.  The 

number material fibers were kept as constant with 4 fibers along the depth and width of 

the concrete core and 4 fibers along the width of the flange and the depth of the web of 

the steel tube. A single layer of fiber along the depth of the flange and width of the web 

of the steel tube was introduced.  Figure 5.31 illustrates the axial force vs. deformation 

response for each analysis.  The results are presented individually for the concrete core, 

the steel tube, and the composite cross-section.  The specimen undergoes severe local 

buckling at the early stages of loading due the high D/t ratio of the steel tube.  Softening 

type of response initiates following the formation of concrete crushing.  The 

computational results are found to exhibit almost no variation with respect to the size of 

the mesh.  This might be attributed to the fact that the specimen does not suffer from 

geometric nonlinearity due its small L/D ratio.  This creates a uniform strain distribution 

at each interpolation point along the element length.  In addition, the axial displacement 

field is well predicted with the quadratic interpolation functions employed in the natural 

coordinates. The progression of damage for the specimen CR4-D-2 is initiated by 

yielding of the steel tube at 90% of the peak axial load acting on the composite section.  

Yielding of the steel tube is followed by local buckling of the steel tube at 97% of the 

peak axial load.  The computational results detected crushing of concrete to take place 

simultaneously with the attainment of peak axial load.    

Varma (2000) conducted an experimental study on short RCFT columns utilizing 

high strength materials.  The specimen SC48-46 is analyzed using 2 elements per 

member with 4 integration points.  The comparison of the experimental and 

computational results is presented in Figure 5.32 and good comparison is obtained with 

respect to initial stiffness, peak axial load, and the strength degradation stiffness.  The 

progression of local damages started with steel tube yielding and local buckling occurring 

at 71.06 % and 79.18 % of the peak axial load, respectively.  Concrete crushing is 

detected at the same time when the peak load is reached.    

The next specimen studied is IVA, which was tested by Tomii and Sakino (1979) 

using the pinned-ended support conditions portrayed in Figure 5.30.  The specimen was 
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constructed using low strength materials for the steel tube and the concrete core.  The 

analysis of IVA is conducted using 2 elements per member with 4 integration points 

along the element length.  Similar to the experimental results documented by Tomii and 

Sakino (1979), a stable response is obtained without any significant strength degradation.  

The comparison of the analysis and experimental results is given in Figure 5.33, where a 

good correlation is attained.  The progression of damage states is found to initiate with 

steel tube yielding at 80% of the peak axial load.  Concrete crushing takes place 

following steel tube yielding around 91% of the peak axial load.  The analysis detected 

local buckling of the steel tube at the same time when the peak axial load is reached.  Due 

to the small D t/  ratio of the specimen IVA, no strength degradation is observed even 

after local buckling of the steel tube takes place.    

 
Figure 5.31 Comparison of Computational and Experimental Results for an RCFT Stub 

Column Test (Nahakara et al., 1998, Specimen CR4-D-2, f y  = 262 MPa, f c
'  = 41.1 

MPa, D t/ = 73.7, L D/ = 3) 
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The geometrically and materially nonlinear short RCFT columns analyzed until 

this point represent RCFT members covering extreme values with respect to the 

parameters of f c
'  and D t/ .  The comparisons of experimental and computational results 

in Figures 5.31 through 5.33 showed that the mixed finite element formulation 

successfully predicts a wide range of behavioral characteristics of short RCFT columns.   

In order to extend the verification of the mixed finite element formulation to other RCFT 

columns available in the literature, multiple specimens from the experimental database by 

Tort and Hajjar (2003) were studied.  The selected specimens were examined in three 

different groups with respect to the parameters of f c
' and D t/  since these characteristics 

govern the load-deformation response significantly.  Group 1 was assumed to have 

specimens with high f c
'  values.  The specimens having high D t/  values were placed in 

Group 2.  Group 3 contained the specimens with moderate values of f c
'  and D t/ .  In 

Table 5-8, the material and geometric properties of specimens are summarized, where 

measured values are presented.  The right superscripts attached to the name of the 

specimens denoted the corresponding group number.    

The discretization scheme of the specimens is selected as 2 elements per member 

with 4 integration points.  The constant-displacement arc length method is utilized as the 

global nonlinear solution scheme (Yang and Kuo, 1994).  Two types of boundary 

conditions are introduced as fixed- fixed or pinned-roller.  The slip between the steel tube 

and the concrete core is restricted at the supports but allowed at the mid-joint, consistent 

with the experiment boundary conditions.  Figure 5.34– Figure 5.58 portray the 

comparison of computational and experimental results in terms of axial load vs. axial 

deformation response.  In each plot, three sets of analysis data are presented, including 

the steel tube, the concrete core, and the composite section.  This helps to examine local 

damage states (e.g., steel tube yielding, concrete crushing, local buckling) and their 

contribution to the global response. 
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Figure 5.32 Comparison of Computational and Experimental Results for an RCFT Stub 

Column Test (Varma, 2000, Specimen SC48-46, f y  = 471 MPa, f c
' = 110 MPa, D t/ = 

52.6, L D/ = 4) 
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Figure 5.33 Comparison of Computational and Experimental Results for an RCFT Stub 

Column Test (Tomii and Sakino, 1979, Specimen IVA, f y  = 284 MPa, f c
'  = 19.81 MPa, 

D t/ = 24, L D/ = 3) 
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Table 5-8 Concentrically Loaded RCFT Column Tests 
 

Specimen 
Label 

Es 
(MPa) 

fy 
(MPa) 

f'c 
(MPa) 

D 
(mm) 

B 
(mm) 

t 
(mm) D/t L 

(mm) L/D 

g31 209615 327.0 96.0 119.9 119.9 5.00 24.0 500 4 
g41 210048 439.0 96.0 119.9 119.9 5.00 24.0 500 4 
g81 209740 323.0 103.0 119.9 119.9 8.00 15.0 500 4 

g271 210556 379.0 91.0 249.9 249.9 8.00 31.2 500 4 
SC32-461 197000 269.0 110.6 303.5 303.5 8.64 35.1 1220 4 
SC32-801 197000 600.0 110.6 305.3 305.3 8.89 34.3 1220 4 

I-A2 206010 194.2 38.3 100.0 100.0 2.29 43.7 300 3 
II-A2 213858 339.4 21.4 100.1 100.1 2.21 45.3 300 3 
III-A2 206010 288.4 20.5 100.1 100.1 2.21 45.3 300 3 

S12 180518 356.0 30.5 127.3 127.3 3.15 40.4 635 5 
R12 190164 430.0 30.5 152.3 76.0 3.00 50.8 635 4 

CR4-D-82 206000 262.0 80.3 324.1 324.1 4.37 74.2 969 3 
CR4-C-4-12 206000 262.0 41.1 214.9 214.9 4.37 49.2 645 3 
CR8-C-82 206000 835.0 41.1 214.9 214.9 4.37 49.2 525 3 

g13 209655 304.1 47.0 119.9 119.9 5.00 24.0 500 4 
g23 209567 438.0 46.0 119.9 119.9 4.98 24.1 500 4 
S23 190164 357.0 26.0 127.0 127.0 4.32 29.4 635 5 
S33 205322 322.0 23.8 127.0 127.0 4.55 27.9 635 5 
S43 203974 312.0 23.8 126.5 126.5 5.67 22.3 635 5 
S53 204633 347.0 23.8 127.2 127.2 7.47 17.0 635 5 
R23 213593 382.7 26.0 152.9 76.5 4.47 34.2 635 4 
R33 214968 413.7 26.0 152.4 101.9 4.32 35.3 635 4 
R43 206011 365.0 23.8 152.7 102.9 4.57 33.4 635 4 
R53 204633 324.1 23.8 151.4 101.3 5.72 26.5 635 4 
R63 205322 357.9 23.8 152.4 102.1 7.37 20.7 635 4 
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Figure 5.34 Comparison of Computational and Experimental Results for an Axially-

Loaded RCFT Short Column (Grauers, 1993, Specimen 3) 
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Figure 5.35 Comparison of Computational and Experimental Results for an Axially-

Loaded RCFT Short Column (Grauers, 1993, Specimen 4) 
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Figure 5.36 Comparison of Computational and Experimental Results for an Axially-

Loaded RCFT Short Column (Grauers, 1993, Specimen 8) 
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Figure 5.37  Comparison of Computational and Experimental Results for an Axially-

Loaded RCFT Short Column (Grauers, 1993, Specimen 27) 
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Figure 5.38 Comparison of Computational and Experimental Results for an Axially-

Loaded RCFT Short Column (Varma, 2000, SC32-46) 
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Figure 5.39 Comparison of Computational and Experimental Results for an Axially-

Loaded RCFT Short Column (Varma, 2000, SC32-80) 
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Figure 5.40  Comparison of Computational and Experimental Results for an Axially-

Loaded RCFT Short Column (Tomii and Sakino, 1979, IA) 
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Figure 5.41 Comparison of Computational and Experimental Results for an Axially-

Loaded RCFT Short Column (Tomii and Sakino, 1979, IIA) 
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Figure 5.42 Comparison of Computational and Experimental Results for an Axially-

Loaded RCFT Short Column (Tomii and Sakino, 1979, IIIA) 
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Figure 5.43 Comparison of Computational and Experimental Results for an Axially-

Loaded RCFT Short Column (Schneider, 1998, S1) 



 
 

206

0

100

200

300

400

500

600

700

800

900

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0
Axial Displacement (mm)

A
xi

al
 F

or
ce

 (k
N

)

Experiment
Composite Section - analysis
Steel Tube - analysis
Concrete Core - analysis

 
Figure 5.44 Comparison of Computational and Experimental Results for an Axially-

Loaded RCFT Short Column (Schneider, 1998, R1) 
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Figure 5.45 Comparison of Computational and Experimental Results for an Axially-

Loaded RCFT Short Column (Nakahara et al., 1998, CR4-D-8) 
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Figure 5.46 Comparison of Computational and Experimental Results for an Axially-

Loaded RCFT Short Column (Nakahara et al., 1998, CR4-C-4-1) 
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Figure 5.47 Comparison of Computational and Experimental Results for an Axially-

Loaded RCFT Short Column (Nakahara et al., 1998, CR8-C-8) 
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Figure 5.48 Comparison of Computational and Experimental Results for an Axially-

Loaded RCFT Short Column (Grauers, 1993, Specimen 1) 
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Figure 5.49 Comparison of Computational and Experimental Results for an Axially-

Loaded RCFT Short Column (Grauers, 1993, Specimen 2) 
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Figure 5.50 Comparison of Computational and Experimental Results for an Axially-

Loaded RCFT Short Column (Schneider, 1998, S2) 
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Figure 5.51 Comparison of Computational and Experimental Results for an Axially-

Loaded RCFT Short Column (Schneider, 1998, S3) 
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Figure 5.52 Comparison of Computational and Experimental Results for an Axially-

Loaded RCFT Short Column (Schneider, 1998, S4) 
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Figure 5.53 Comparison of Computational and Experimental Results for an Axially-

Loaded RCFT Short Column (Schneider, 1998, S5) 



 
 

211

0

200

400

600

800

1000

1200

0.0 5.0 10.0 15.0 20.0
Axial Displacement (mm)

A
xi

al
 F

or
ce

 (k
N

)

Experiment
Composite Section - analysis
Steel Tube - analysis
Concrete Core - analysis

 
Figure 5.54 Comparison of Computational and Experimental Results for an Axially-

Loaded RCFT Short Column (Schneider, 1998, R2) 
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Figure 5.55 Comparison of Computational and Experimental Results for an Axially-

Loaded RCFT Short Column (Schneider, 1998, R3) 
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Figure 5.56 Comparison of Computational and Experimental Results for an Axially-

Loaded RCFT Short Column (Schneider, 1998, R4) 
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Figure 5.57 Comparison of Computational and Experimental Results for an Axially-

Loaded RCFT Short Column (Schneider, 1998, R5) 
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Figure 5.58 Comparison of Computational and Experimental Results for an Axially-

Loaded RCFT Short Column (Schneider, 1998, R6) 

As may be seen from the figures, the overall correlation between the experimental 

and computational results is generally excellent for the full range of geometric and 

material properties common within RCFTs.  More detailed error analysis of the 

computational results presented in Figures 5.34 through 5.58 is given in Table 5.9.  Four 

types of data values are obtained from the experimental plots including initial stiffness 

( Ei ), peak axial load ( Po ), displacement at peak axial load ( do ), and residual strength at 

high deformation levels ( Pres ).  The experimental data values are then compared to the 

computational results and the associated error values are computed.   

Figures 5.58 to Figure 5.61 illustrate the variation of the absolute value of the 

error with respect to the structural parameters of ( )D t f Ey s/ /×  and f c
' .  These two 

parameters characterize the response of RCFT columns.  For example, 

( )D t f Ey s/ /× signifies the slenderness of the steel tube against local buckling, which 

influences the peak strength and the post-peak behavior of the RCFT columns.  The value 

of f c
' , on the other hand, has significant contribution in every segment of the load 

deformation response of RCFT columns, which is attributed to the nonlinear response of 

concrete.



 
 

214

Table 5-9 Comparison of Experimental and Computational Results for Concentrically-Loaded Short Column Tests 
Experimental Results Computational Results Error (%) 

 
Specimen Label Ei  

(kN/mm) 
Po       

(kN) 
do     

(mm) 
Pres       

(kN) 
Ei  

(kN/mm) 
Po        

(kN) 
do     

(mm) 
Pres     

(kN) 
Ei  

(kN/mm) 
Po     

(kN) 
do      

(mm) 
Pres     

(kN) 
I-A2 1162.7 495.5 1.16 300.3 1288.3 522.1 0.57 435.6 -10.8 -5.4 50.9 -45.1 
II-A2 1052.8 517.8 0.90 381.5 1042.3 509.2 0.57 507.6 1.0 1.7 36.7 -33.0 
III-A2 1676.7 525.5 0.73 375.4 1305.4 584.1 0.89 562.6 22.1 -11.1 -21.9 -49.9 
IV-A3 2515.1 649.3 0.56 668.2 1697.8 719.4 0.76 711.9 32.5 -10.8 -35.7 -6.5 

g13 410.0 1440.0 3.87 1250.0 1633.9 1314.3 1.91 1314.3 -298.5 8.7 50.6 -5.1 
g23 641.5 1685.4 3.39 1525.3 1569.8 1568.7 1.52 1568.7 -144.7 6.9 55.2 -2.8 
g31 631.6 2000.0 3.36 1437.0 1883.6 1944.2 1.52 1591.2 -198.2 2.8 54.8 -10.7 
g41 605.0 2237.3 4.10 1847.5 1885.5 2130.3 1.52 1809.2 -211.7 4.8 62.9 2.1 
g81 1111.5 2227.3 2.92 2145.5 2301.9 2342.2 1.63 2288.1 -107.1 -5.2 44.2 -6.6 

g271 2626.3 8290.9 3.25 4654.6 7371.2 7851.3 1.52 5877.0 -180.7 5.3 53.2 -26.3 
S12 1011.6 924.7 2.28 774.2 981.5 995.3 2.13 937.6 3.0 -7.6 6.6 -21.1 
S23 1354.8 1086.0 3.19 956.9 1102.9 1176.8 4.45 1161.6 18.6 -8.4 -39.5 -21.4 
S33 722.6 1118.3 2.18 892.5 1161.4 1126.9 1.60 1113.5 -60.7 -0.8 26.6 -24.8 
S43 481.7 1182.8 2.08 1161.3 1289.9 1295.0 1.60 1288.0 -167.8 -9.5 23.1 -10.9 
S53 1024.0 2064.5 2.48 1967.7 1083.9 1750.2 1.78 1736.2 -5.8 15.2 28.2 11.8 
R12 663.6 806.0 1.39 617.9 787.5 758.8 1.27 432.6 -18.7 5.8 8.6 30.0 
R23 779.1 1000.0 1.72 806.0 988.1 1000.6 1.52 980.8 -26.8 -0.1 11.6 -21.7 
R33 1660.8 1119.4 1.39 1014.9 1174.4 1216.1 1.65 1186.5 29.3 -8.6 -18.7 -16.9 
R43 730.7 1223.9 2.20 1014.9 1167.5 1140.8 1.52 1116.3 -59.8 6.8 30.9 -10.0 
R53 900.0 1343.3 1.94 1194.0 1287.5 1303.1 1.65 1291.6 -43.1 3.0 14.9 -8.2 
R63 900.0 1686.6 1.81 1641.8 1477.5 1714.0 2.03 1701.9 -64.2 -1.6 -12.2 -3.7 

CR4-D-82 3298.2 8553.3 3.46 3441.2 4928.2 9359.9 2.54 3861.8 -49.4 -9.4 26.6 -12.2 
CR4-C-4-12 2459.6 2538.0 1.97 1761.0 2942.7 2788.8 1.33 2138.7 -19.6 -9.9 32.5 -21.4 
CR8-C-82 2581.9 5512.9 3.40 4380.4 3436.6 5328.2 2.76 4526.9 -33.1 3.4 18.8 -3.3 
CR4-D-22 2447.4 3668.4 2.22 2583.4 3393.5 4025.4 1.78 2740.4 -38.7 -9.7 19.8 -6.1 
SC32-461 4135.6 11511.6 2.92 6383.7 4420.8 12087.4 3.73 7121.8 -6.9 -5.0 -27.7 -11.6 
SC32-801 4893.8 14232.6 3.26 10255.8 4501.0 14673.0 3.81 9852.0 8.0 -3.1 -16.9 3.9 
SC48-461 4013.4 11920.2 3.47 5651.2 4135.9 11835.0 3.56 5017.7 -3.1 0.7 -2.6 11.2 

Mean of Error -58.4 -1.5 17.2 -11.4 
Standard Deviation of Error 84.7 7.1 29.7 16.6 

Median of Error -30.0 -1.2 21.5 -10.4 
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The predictions of the initial stiffness show a significant scatter.  The mean value of the 

error from Table 5-9 is obtained as -58.4 % while the standard deviation is 84.7 %.  From 

Figure 5.59, it can be seen that the error values for the specimens with low 

( )D t f Ey s/ /×  (<1.0) and medium strength concrete (40 MPa < f c
' < 80 MPa) are 

usually the highest.  Due to less variation in the modulus of elasticity of the steel tube 

compared to the concrete, the error in Ei  may be attributed the inaccuracy in 

calculating Ec .   

 

Figure 5.59 Variation of error for Ei  with respect to ( )D t f Ey s/ /×  and f c
'  

 
The correlation of the experimental and computational results for Po  is often found to be 

satisfactory.  The mean error and the standard deviation are calculated as -1.5 % and 7.11 

%, respectively.  In Figure 5.60, the largest error values are obtained for the specimens 

with low values of ( )D t f Ey s/ /×  and f c
' .  This might be attributed to the fact that the 

material model utilized for the cold formed steel tube underestimates the hardening 

response following yielding. 

Figure 5.61 shows the comparison of experimental and computational values of 

do .  The mean value of the error is 17.2 % and the standard deviation is 29.7%.  In the 

case of specimens with low ( )D t f Ey s/ /× values, the error values are found to be the 

largest.  This error may be due to the unsatisfactory predictions of Ei  for the specimens 

having low ( )D t f Ey s/ /×  values.  

|Error(%)|

( )D t f Ey s/ /×  

f’c 
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Figure 5.60 Variation of error for Po  with respect to ( )D t f Ey s/ /×  and f c
'  

 

 

Figure 5.61 Variation of error for do with respect to ( )D t f Ey s/ /×  and f c
'  

 
The comparison of experimental and computational values for Pres  is presented in 

Figure 5.62.  The magnitude of the error is found to be the minimum for the specimens 

with f c
'  values ranging from 40 to 80 MPa.  No clear trend is observed for the error 

values due to the change in the slenderness of the steel tube.  The average error values 

and the standard deviation are found to be -11.4% and 16.6%, respectively. 

 

|Error(%)|

( )D t f Ey s/ /×  f c
'  

|Error(%)| 

( )D t f Ey s/ /×  
f c

'  
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Figure 5.62 Variation of error for do with respect to ( )D t f Ey s/ /×  and f c
'  

 
5.5. Materially and Geometrically Nonlinear RCFT Beam Tests 
 
 The main motivation in conducting pure-bending tests is to understand the 

flexural response of the RCFT composite section and to quantify the contribution of 

concrete core to the moment capacity (Lu and Kennedy, 1994).  From the experimental 

database by Tort and Hajjar (2003), two types of loading schemes were identified as 

depicted in Figure 5.63.  Lu and Kennedy (1994) tested RCFT members under four point 

loading creating a center portion of the beam under constant bending moment.  Tomii and 

Sakino (1979) applied bending moment directly at the supports and the RCFT member 

was subjected to a uniform moment along its whole length.  

 
Figure 5.63 Pure Bending of RCFT Beams 

 
The accuracy of the mixed finite element formulation in simulating pure bending 

tests is assessed in this section.  First, a mesh convergence study was performed on the 

|Error(%)|

( )D t f Ey s/ /×  
f c

'

RCFT 
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specimen CB12 by Lu and Kennedy (1994).  A total number of six analyses were 

conducted by varying the number of elements per member from 2 to 4 and varying the 

number of integration points as 4 and 6.  The same fiber discretization was used for each 

analysis.  The number of material fibers was kept as 4 along the depth and width of the 

concrete core and the steel tube.  A single layer of fiber layers around the perimeter of the 

steel tube was defined.  A displacement-controlled solution algorithm was utilized by 

selecting the steel tube transverse displacement of the node under the left shear loading as 

the control degree-of-freedom (Yang and Kuo, 1994).  Figure 5.64 shows the comparison 

of load deformation response for each case of the analyses.  In the legend of Figure 5.64, 

the first character indicates the number of elements while the second shows the number 

of integration points.  Until the attainment of the peak load, the computational results are 

not exhibiting a noticeable deviation from each other.  However, in the post-peak region a 

slight discrepancy is evident.  It was found that using 3 elements per member with 4 

integration points produces a maximum error in moment less than 0.5% compared to the 

finest mesh with 4 elements per member with 6 integration points.  Therefore, using 3 

elements with 4 integration points is determined to be a mesh density producing an 

acceptable level of accuracy.  It should be noted that even with a relatively coarse mesh 

of 2 elements with 4 integration points, the analysis produced satisfactory results.  This 

can be attributed to the superior representation of inelastic curvatures in mixed-finite 

element formulation.   

Lu and Kennedy (1994) documented experimental moment-curvature plots for the 

specimens tested under four point bending.  Figure 5.65 illustrates the comparison of the 

computational and experimental results for the Specimen CB12.  A good correlation is 

achieved with respect to the initial stiffness and moment capacity.  However, the 

computational response overestimated the strength degradation following the attainment 

of the peak moment.  In Figure 5.65, the moment vs. curvature response is presented for 

the steel tube, concrete core, and composite section, individually.  It can be seen that the 

strength degradation in the post-peak region is attributed to concrete crushing.  The 

contribution of the concrete core to the moment capacity is found to reach up to a level of 

35% throughout the loading history. 
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Figure 5.64 Mesh-Convergence of Pure Bending of RCFT Beams 

 

 
Figure 5.65 Comparison of Computational and Experimental Results for an RCFT Beam 

Pure Bending Test (Lu and Kennedy, 1994, Specimen CB12) 

 
Gho and Liu (2004) also performed four point bending tests on RCFT beams.  A 

higher strength concrete is utilized compared to the specimens by Lu and Kennedy 

(1994).  Specimen B04 by Gho and Liu (2004) is analyzed by using 3 elements per 

member for the edge spans and 4 elements per member for the center span.  The number 

of elements is increased by one for the center span due to the fact that the experimental 
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results are given for bending displacement of the middle of the specimen.  The maximum 

bending displacement is obtained as the difference in total displacement of the node 

located at the middle of the specimens and the node on which the transverse loading is 

being applied.  The comparison of the experimental and computational results can be 

found in Figure 5.66.  A good correlation in initial and bounding stiffness (post-peak 

stiffness) is achieved.  However, discrepancy in the maximum moment value can be 

noticed.  This might be attributed to the overestimation of the initial plastic strain due to 

residual stress in the steel tube. 

 In the tests by Tomii and Sakino (1979), RCFT beams are subjected to bending 

moments applied directly at the elements ends as it is illustrated in Figure 5.63.  The 

specimen IV-0 by Tomii and Sakino (1979) is analyzed with 3 finite elements per 

member with 4 gauss points.  Displacement control algorithm is utilized by selecting the 

in-plane rotation at one end of the member as the controlling degree-of-freedom (Yang 

and Kuo, 1994).  In Figure 5.67, the computational and experimental load deformation 

 response of Specimen IV-0 can be seen.  The finite element results are found to estimate 

the initial stiffness and the maximum value of the moment accurately.  On the other hand, 

the effect of residual stress is overestimated causing earlier yielding of the specimen. 

 
Figure 5.66 Comparison of Computational and Experimental Results for an RCFT Beam 

Pure Bending Test (Gho and Liu, 2004, Specimen B04) 
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Figure 5.67 Comparison of Computational and Experimental Results for an RCFT Beam 

Pure Bending Test (Tomii and Sakino, 1979, Specimen IV0) 

 The verification studies conducted on pure bending tests until this point was 

aimed to illustrate the capability of the mixed-finite element formulation to model 

representative RCFT members characterizing the behavioral aspects in pure bending tests 

with respect to the material properties and boundary conditions.  The response patterns 

exhibited by the computational results were identified and discussed.          

 To examine the ability to model the results from the experimental database of 

pure bending tests by Tort and Hajjar (2003), RCFT members with a wider range of 

geometric and material properties were selected.  The assessment of the accuracy of the 

computational results was performed based on comparisons of key numerical quantities 

in the experimental and computational load-deformation response including initial 

stiffness, peak moment, and bounding stiffness. 

The minimum mesh density of the specimens analyzed was 3 elements per 

member with 4 integration points.  The constant-displacement arc length method was 

utilized as the global nonlinear solution scheme.  The local response parameters including 

cross-section forces and deformations were determined through Newton-Raphson 

nonlinear solution algorithm due to the fact the load vector at the local level is decided 

based on the operations performed at the global level (see chapter 2).  This restricted the 
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use of limit-state algorithms such as arc-length method or displacement-control.  In 

Figure 5.68, the numerical representations of the pure bending test setups are illustrated.   

Pinned-roller boundary conditions were introduced for all of the specimens.  The slip 

between the steel tube and concrete core was allowed at every joint along the element 

length, consistent with the experiment boundary conditions. 

Figure 5.69-Figure 5.83 show the comparison of computational and experimental 

results in terms of moment vs. curvature, moment vs. bending displacement, or moment 

vs. end-rotation response.  The moment-curvature response was obtained for the most 

stressed cross-section, which was usually located at the mid-length of the specimen. 

Since the steel tube and the concrete core rotational degrees of freedom are introduced 

independently in the natural coordinates, the moment curvature response is presented 

individually for the steel tube, the concrete core, and the composite section in a single 

plot.   

 
Figure 5.68 Concentrically Loaded Short RCFT Column Computational Model 

 A total number of 18 specimens were analyzed from the database by Tort and 

Hajjar (2003).  The specimens exhibited a distinct gradient with respect to boundary 

conditions, material properties, and geometric properties.  The specimens were first 

grouped as “a” and “b” according to the boundary conditions introduced in Figure 5.68.  

The second classification of the specimens was performed with respect to the concrete 

strength, where Group 1 was assumed to have low-strength concrete specimens and 

Group 2 was assumed to have high-strength concrete specimens. Table 5-10 gives a full 

summary of the measured material and geometric properties of the specimens, where 

available.  The nomenclature to denote the classification of the specimens was designed 

as supercripts attached to their experimental label.  For example, the specimen “CB12a1” 

has type “a” boundary conditions and it belongs to Group 1 with respect to the concrete 

a m a 

M M 
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strength.  This type of classification of the specimens helps to analyze the sources of 

errors between the experimental and computational results and to recommend ways for 

improving the correlations with the experiments. 

Table 5-10 Pure Bending Tests of RCFT Beams 
 

Specimen 
Label 

Es  
(MPa) 

f y  
(MPa) 

f c
'  

(MPa) 
D  

(mm) 
B  

(mm) 
t  

(mm) D / t  L  
 (mm) 

CB12a1 212001 383.0 47.0 152.4 152.4 4.43 34.4 a = 235, m = 1305 
CB13a1 212001 409.8 42.8 152.4 152.4 4.43 34.4 a = 463, m = 1305 
CB15a1 212001 383.0 41.2 152.4 152.4 4.43 34.4 a =768, m = 1305 
CB22a1 205402 490.0 46.9 152.4 152.4 8.95 17.0 a = 236, m = 1305 
CB31a1 208401 379.0 46.7 253.4 152.0 6.17 41.1 a = 26, m = 1508 
CB35a1 208401 379.0 44.3 253.4 152.0 6.17 41.1 a = 1276, m = 1508 
CB41a1 200003 405.0 46.2 253.0 152.2 9.04 28.0 a = 261, m = 1508 
CB45a1 200003 405.0 43.8 253.0 152.2 9.04 28.0 a = 1276, m = 1508 
CB52a1 208401 379.0 47.1 253.4 152.0 6.17 41.1 a = 235, m = 1305 
CB53a1 208401 379.0 42.1 253.4 152.0 6.17 41.1 a = 463, m = 1305 
CB55a1 208401 379.0 40.5 253.4 152.0 6.17 41.1 a = 768, m = 1305 

B1CSNa1 199955 350.0 39.0 140.0 140.0 3.90 35.9 a = 325, m =300 
B1DRNa1 199955 360.0 39.0 200.0 100.0 4.70 42.6 a = 325, m =300 

B02a2 205002 438.0 56.3 150.2 150.4 4.87 30.8 a = 365, m = 730 
B04a2 205002 438.0 87.5 150.0 150.2 4.84 31.0 a = 365, m = 730 
II0b1 208953 305.1 21.6 100.0 100.0 2.27 44.1 300 
III0b1 210956 289.4 20.6 100.0 100.0 2.98 33.6 300 
IV0b1 225630 284.5 18.6 100.0 100.0 4.25 23.5 300 
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Figure 5.69 Comparison of Computational and Experimental Results for an RCFT Beam 

under Four Point Bending (Lu and Kennedy, 1994, Specimen CB13) 
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Figure 5.70 Comparison of Computational and Experimental Results for an RCFT Beam 

under Four Point Bending (Lu and Kennedy, 1994, Specimen CB15) 
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Figure 5.71 Comparison of Computational and Experimental Results for an RCFT Beam 

under Four Point Bending (Lu and Kennedy, 1994, Specimen CB22) 
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Figure 5.72 Comparison of Computational and Experimental Results for an RCFT Beam 

under Four Point Bending (Lu and Kennedy, 1994, Specimen CB31) 
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Figure 5.73 Comparison of Computational and Experimental Results for an RCFT Beam 

under Four Point Bending (Lu and Kennedy, 1994, Specimen CB35) 
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Figure 5.74 Comparison of Computational and Experimental Results for an RCFT Beam 

under Four Point Bending (Lu and Kennedy, 1994, Specimen CB41) 
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Figure 5.75 Comparison of Computational and Experimental Results for an RCFT Beam 

under Four Point Bending (Lu and Kennedy, 1994, Specimen CB45) 
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Figure 5.76 Comparison of Computational and Experimental Results for an RCFT Beam 

under Four Point Bending (Lu and Kennedy, 1994, Specimen CB52) 
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Figure 5.77 Comparison of Computational and Experimental Results for an RCFT Beam 

under Four Point Bending (Lu and Kennedy, 1994, Specimen CB53) 
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Figure 5.78 Comparison of Computational and Experimental Results for an RCFT Beam 

under Four Point Bending (Lu and Kennedy, 1994, Specimen CB55) 
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Figure 5.79 Comparison of Computational and Experimental Results for an RCFT Beam 

under Four Point Bending (Assi et al., 2003, Specimen B1CSN) 
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Figure 5.80 Comparison of Computational and Experimental Results for an RCFT Beam 

under Four Point Bending (Assi et al., 2003, Specimen B1DRN) 
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Figure 5.81 Comparison of Computational and Experimental Results for an RCFT Beam 

under Four Point Bending (Assi et al., 2003, Specimen B02) 
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Figure 5.82 Comparison of Computational and Experimental Results for an RCFT Beam 

under Four Point Bending (Tomii and Sakino, 1979 Specimen II0) 
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Figure 5.83 Comparison of Computational and Experimental Results for an RCFT Beam 

under Four Point Bending (Tomii and Sakino, 1979, Specimen III0) 

 
As may be seen from the figures, the overall correlation between the experimental 

and computational results is generally excellent for the full range of geometric and 

material properties common within RCFTs.  A detailed evaluation of the accuracy of the 
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computational results is presented in Table 5-11 in the form of an error analysis.  Three 

types of data values obtained from the computational load deformation curves are 

compared their counterparts from the experiments including initial stiffness ( Ei ), peak 

moment ( Mo ), and bounding stiffness ( Kb ).  The corresponding percentage of error is 

then calculated. 

Figure 5.84 and Figure 5.85 illustrate the variation of the absolute value of the 

error with respect to the structural parameters of ( )D t f Ey s/ /× and f c
' .  These two 

parameters constitute the two main properties dominating the response of RCFT beams.  

For the majority of the specimens, the computational initial stiffness values are 

determined to be larger than the experimental initial stiffnesses.  The mean error and the 

standard deviation are calculated as 32.0% and 32.3%, respectively.  From Figure 5.84, it 

can be seen that the largest percent error in absolute value corresponds to the specimens 

with slender steel tubes and low strength concrete.  The discrepancy might be due to 

inaccurate estimation of the elastic modulus of the concrete. 

 

Figure 5.84 Variation of error for Ei  with respect to ( )D t f Ey s/ /×  and f c
'  

 
As can be seen from Table 5-11and Figure 5.85, the computational results 

exhibited a good correlation with Mo .  The mean value of error is -6.3% and the standard 

deviation is 12.1%.  In the case of specimens having concrete strength below 40 MPa, the 

error values are found to be consistently larger.  No significant trend in the error values 

can be seen with respect to ( )D t f Ey s/ /× .    

f c
'  

Error (%)  
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Table 5-11 Comparison of Computational and Experimental Results for an RCFT Beam under Pure Bending 
Experimental Results Computational Results Error (%) 

Specimen 
Label Ei     

(kN.m.mm) 
Mo       

(kN.m) 
Kb          

( kN.m.mm) 
Ei     

(kN.m.mm) 
Mo     

(kN) 
Kb         

( kN.m.mm) 
Ei       Mo    Kb       

CB12a1 2096108 68.8 26424.0 2901346 54.9 -19686.0 38.4 -20.2 -174.5 
CB13a1 1753030 74.2 64831.0 2870240 65.0 -18702.0 63.7 -12.4 -128.8 
CB15a1 1753030 71.2 47271.0 2851924 62.3 -99971.0 62.7 -12.5 -311.5 
CB22a1 3236364 150.0 118565.0 4118179 134.8 -58495.0 27.2 -10.1 -149.3 
CB31a1 11237374 207.6 64214.0 12119057 197.2 62489.0 7.8 -5.0 -2.7 
CB35a1 11237374 204.5 58630.0 13254193 210.9 -97624.0 17.9 3.1 -266.5 
CB41a1 11071340 281.3 252386.0 15801100 258.5 -0.1 42.7 -8.1 -100.0 
CB45a1 11091288 280.3 71898.0 15665686 246.0 -220425.0 41.2 -12.2 -406.6 
CB52a1 5326404 145.7 153164.0 5576125 154.1 -262.9 4.7 5.8 -100.2 
CB53a1 3775758 143.9 82082.0 5427300 131.0 12976.0 43.7 -9.0 -84.2 
CB55a1 3775758 142.4 97481.0 5487917 124.5 -169524.0 45.3 -12.6 -273.9 

Specimen 
Label 

Ei       

(kN.m/mm) 
Mo       

(kN.m) 
Kb         

( kN.m/mm) 
Ei   

(kN.m/mm) 
Mo     

(kN) 
Kb         

( kN.m/mm) 
Ei      Mo    Kb       

B02a2 27.6 93.8 0.8 46.6 79.6 0.21 69.1 -15.1 -74.5 
B04a2 35.8 101.3 0.4 46.7 87.5 0.38 30.2 -13.6 -3.9 

B1CSNa1 74.8 338.7 0.0 109.2 301.8 0.77 46.1 -10.9 76800.0 
B1DRNa1 123.1 594.5 0.0 234.0 455.3 0.69 90.2 -23.4 68780.0 

Specimen 
Label 

Ei      

(kN.m/rad) 
Mo       

(kN.m) 
Kb         

( kN.m/rad) 
Ei    

(kN.m/rad) 
Mo     

(kN) 
Kb         

( kN.m/rad) 
Ei    Mo    Kb       

II0b1 4994.2 11.2 6.1 2893.8 13.8 21.24 -42.1 23.1 246.8 
III0b1 4082.3 14.7 10.1 3355.2 16.7 26.20 -17.8 13.4 158.7 
IV0b1 4106.4 21.7 44.1 4330.6 23.2 35.08 5.5 7.1 -20.4 

mean error 32.0 -6.3 7993.8 
standard deviation of error 32.3 12.1 23613.7 

median error 39.8 -10.5 -92.1 
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Figure 5.85 Variation of error for Mo  with respect to ( )D t f Ey s/ /×  and f c
'  

 
The bounding stiffness values from the computational results exhibited a huge 

dispersion.  For two of the specimens, very high values of percent error are obtained, 

which is due to the fact the experimental bounding stiffness is very close to zero.  

 
5.6. Materially and Geometrically Nonlinear Proportionally-

Loaded RCFT Beam-Column Tests 
 
 Proportionally-loaded column tests are often conducted to investigate the 

interaction of axial load and bending moment in RCFT columns (Bridge, 1976; Shakir-

Khalil and Mouli, 1990; Shakir-Khalil and Zeghiche, 1989; Shakir-Khalil, 1994; Chung 

et al., 2001).  As shown in Figure 5.86, pin-ended RCFT specimens are subjected to 

eccentrically-applied axial loading.  The eccentricity can be introduced either uniaxially 

or biaxially by adjusting the inclination of the loading axis with respect to the strong axis 

of the RCFT cross-section. 

 
 

Figure 2.28 Proportional loading of RCFT Columns 

 

 

Figure 5.86 RCFT Columns under Eccentric Axial Loading 
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Two representative specimens were selected to analyze using the mixed-finite 

element formulation.  However, first, a mesh convergence study was conducted for the 

specimen tested under uniaxial bending by varying the number of elements and 

integration points.  Figure 5.87 shows four sets of analysis results with different number 

of finite elements and integration points.  In the legend of Figure 5.87, the first number 

designates the number of finite elements and the second number refers to the number of 

integration points.  2 elements per member with 4 integration points and 8 elements with 

6 integration points were decided to be the coarsest and the finest mesh densities, 

respectively.  The fiber discretization scheme was kept as constant with 4 fibers along the 

depth and width of the concrete core and the steel tube.  A single layer of fibers was 

introduced around the perimeter of the steel tube.  It was found that 6 finite elements with 

4 integration points was an acceptable mesh density to produce consistent results and this 

mesh density was employed for the rest of the analysis studies on eccentrically-loaded 

RCFT columns.  The slip at the element ends was restricted but it was allowed at the 

nodes remaining between the supports.  While incrementing the axial load, a constant 

displacement arc length method was utilized (Yang and Kuo, 1994).  The controlling 

degree-of-freedom was selected to be the steel tube transverse displacement of the node 

located at the mid-height.  However, in the case of specimens tested under biaxial-

bending, generalized displacement control method is used to increment the axial loading 

since the selection of the controlling degree-of-freedom was not obvious (Yang and Kuo, 

1994). 

Grauers (1993) conducted an experimental study on eccentrically-loaded square 

RCFT columns.  The specimens were subjected to uniaxial bending.  The effect of 

concrete strength on the interaction of axial load and bending moment was investigated.  

The specimen designated as 13 was analyzed using the mixed finite element formulation.  

As can be seen from Figure 5.88, a good correlation is evident between the computational 

and experimental results.  The initial stiffness and maximum axial load level is slightly 

underestimated, which might be attributed to inaccurate estimation of modulus of 

elasticity of concrete.  
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 The second specimen studied for verification of the mixed-finite element 

formulation belongs to the experimental research by Shakir-Khalil and Zeghiche (1989).  

Specimen 6 was tested under bi-axial bending.  Due to its rectangular shape, it was 

subjected to bending moments with respect to both weak and strong axis.  The weak and  

strong axis eccentricities were 16 mm and 40 mm, respectively.  Therefore, the 

inclination of the loading axes to the strong axis of the cross-section was 33.7o.  The 

comparison of experimental and computational results of Specimen 6 with respect to both 

weak and strong axis is presented in Figure 5.89.  It was found that the mixed finite 

element formulation was able to simulate the experimental test with good accuracy.  

Especially, good correlation was achieved for the initial stiffness.  The comparison for 

the maximum bending moment and bounding (post-peak) stiffness was found to be better 

for the weak axis. 
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Figure 5.87 Mesh-Convergence of Eccentrically-Loaded RCFT Columns 
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Figure 5.88 Comparison of Computational and Experimental Results for an Eccentrically 

Loaded RCFT Column Test (Grauers, 1993, Specimen 13) 

 
Figure 5.89 Comparison of Computational and Experimental Results for an Eccentrically 

Loaded RCFT Column Test (Shakir-Khalil and Zeghiche 1989, Specimen 6)
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In addition to the specimens presented above, more verification studies were 

performed on proportionally-loaded RCFT columns.  Multiple specimens covering a 

comprehensive range of material and geometric properties were selected from the 

experimental database of Tort and Hajjar (2003).  The specimens were classified with 

respect to the boundary conditions and compressive strength of concrete.  The right 

superscripts “a” and “b” attached to the experimental label of the specimens denotes 

uniaxial bending and biaxial bending, respectively.  The distinction between the 

specimens based on concrete strength was performed via right superscripts of “1” and “2” 

attached to their experimental label, where “1” represents low strength concrete while  

“2” identified high strength concrete.  The computational load-deformation data of the 

specimens was compared with that obtained during the experiments.  Utilizing the results 

of the mesh-convergence study, all the specimens were analyzed using 6 finite elements 

per member with 4 integration points. The constant-displacement arc length method and 

generalized displacement control method were utilized as limit point algorithms for the 

specimens under uniaxial bending and biaxial bending, respectively (Yang and Kuo, 

1994).  The computational model employed in the analyses is described in Figure 5.90.  

Pin-roller boundary conditions were assumed for all of the specimens.  The eccentricity 

was introduced through elastic steel beam elements attached to the RCFT column at the 

ends.  The slip between the steel tube and concrete core was restricted at the element ends 

but no slip constraint is defined for the nodes located between the supports. 

 
Figure 5.90 Proportionally-Loaded RCFT Column Computational Model 

The computational and experimental behavior of the eccentrically-loaded 

specimens is presented in terms of axial load vs. mid-height deflection as can be seen 

from Figure 5.91 through Figure 5.107.  The summary of measured material and 

geometric properties of the specimens can be found in Table 5-12.   

 

P P 

e 

RCFT Column

Steel Strut



 
 

238

Table 5-12 Proportionally-Loaded RCFT Beam-Column Tests 
 

Specimen 
Label 

Es  
(MPa) 

f y  
(MPa) 

f c
'  

(MPa) 
D  

(mm) 
B  

(mm) 
t  

(mm) 
e   

(mm) 
L   

(mm) 
1a1 210000 291.9 46.9 120.0 120.0 5.00 20.0 2895.6 
2a1 210000 420.3 46.2 120.0 120.0 5.00 20.0 2895.6 
6a1 210000 287.9 46.2 120.0 120.0 8.00 20.0 2895.6 
7a1 210000 360.7 46.9 120.0 120.0 8.00 20.0 2895.6 
9a2 210000 364.1 102.7 120.0 120.0 8.00 20.0 2895.6 

10a1 210000 364.1 39.3 120.0 120.0 8.00 20.0 2895.6 
SHC1a1 205000 291.0 31.0 203.7 204.0 9.96 38.0 2130.0 

SHC3b1 205000 313.0 37.2 203.2 202.7 10.03 
38.0        

α = 30o 2130.0 

SHC4b1 205000 317.0 39.2 202.7 203.5 9.88 
38.0        

α = 45o 2117.3 

SHC5b1 205000 319.0 44.3 203.2 202.7 10.01 
38.0        

α = 30o 3050.0 

SHC6b1 205000 317.0 36.1 203.2 203.2 9.78 
64.0        

α = 45o 3050.0 
SHC7a1 205000 254.0 35.0 152.4 152.4 6.48 38.0 3050.0 
SHC8a1 205000 254.0 35.0 152.4 152.4 6.48 38.0 3050.0 

2’a1 205000 386.3 40.0 120.0 80.0 5.00 24.0 2760.0 
3’a1 205000 384.7 40.0 120.0 80.0 4.47 24.0 2760.0 
5’a1 205000 343.3 43.0 80.0 120.0 4.47 24.0 2760.0 

7’b1 205000 357.5 44.0 120.0 80.0 4.44 
emajor = 60.0 
eminor = 40.0 2760.0 
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Figure 5.91 Comparison of Computational and Experimental Results for an 

Eccentrically-Loaded RCFT Column (Grauers 1993, Specimen 1) 

0

100

200

300

400

500

600

700

800

0.0 10.0 20.0 30.0 40.0 50.0
Mid-Height Displacement (mm)

A
xi

al
 L

oa
d 

(k
N

)

Experiment

Analysis

 
Figure 5.92 Comparison of Computational and Experimental Results for an 

Eccentrically-Loaded RCFT Column (Grauers 1993, Specimen 2) 
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Figure 5.93 Comparison of Computational and Experimental Results for an 

Eccentrically-Loaded RCFT Column (Grauers 1993, Specimen 6) 
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Figure 5.94 Comparison of Computational and Experimental Results for an 

Eccentrically-Loaded RCFT Column (Grauers 1993, Specimen 7) 
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Figure 5.95 Comparison of Computational and Experimental Results for an 

Eccentrically-Loaded RCFT Column (Grauers 1993, Specimen 9) 



 
 

241

0

100

200

300

400

500

600

700

800

900

0.0 10.0 20.0 30.0 40.0 50.0
Mid-Height Deformation (mm)

A
xi

al
 F

or
ce

 (k
N

)
Experiment

Analysis

 
Figure 5.96 Comparison of Computational and Experimental Results for an 

Eccentrically-Loaded RCFT Column (Grauers 1993, Specimen 10) 
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Figure 5.97 Comparison of Computational and Experimental Results for an 

Eccentrically-Loaded RCFT Column (Bridge 1976, SHC-1) 
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Figure 5.98 Comparison of Computational and Experimental Results for an 

Eccentrically-Loaded RCFT Column (Bridge 1976, SHC-3) 
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Figure 5.99 Comparison of Computational and Experimental Results for an 

Eccentrically-Loaded RCFT Column (Bridge 1976, SHC-4) 
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Figure 5.100 Comparison of Computational and Experimental Results for an 

Eccentrically-Loaded RCFT Column (Bridge 1976, SHC-5) 
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Figure 5.101 Comparison of Computational and Experimental Results for an 

Eccentrically-Loaded RCFT Column (Bridge 1976, SHC-6) 
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Figure 5.102 Comparison of Computational and Experimental Results for an 

Eccentrically-Loaded RCFT Column (Bridge 1976, SHC-7) 
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Figure 5.103 Comparison of Computational and Experimental Results for an 

Eccentrically-Loaded RCFT Column (Bridge 1976, SHC-8) 
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Figure 5.104  Comparison of Computational and Experimental Results for an 

Eccentrically-Loaded RCFT Column (Shakir-Khalil and Zeghiche 1989, Specimen 2) 
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Figure 5.105  Comparison of Computational and Experimental Results for an 

Eccentrically-Loaded RCFT Column (Shakir-Khalil and Zeghiche 1989, Specimen 3) 
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Figure 5.106 Comparison of Computational and Experimental Results for an 

Eccentrically-Loaded RCFT Column (Shakir-Khalil and Zeghiche 1989, Specimen 5) 
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Figure 5.107 Comparison of Computational and Experimental Results for an 

Eccentrically-Loaded RCFT Column (Shakir-Khalil and Zeghiche 1989, Specimen 7) 
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In addition to the graphical presentation of the computational and experimental 

results, an error analysis was conducted on the key quantities sufficient to define the 

load-deformation curve of the specimens including peak axial load ( Po ), initial stiffness 

( Ei ), and bounding stiffness ( Kb ).  The numerical values of the aforementioned 

parameters together with the associated percent errors are given in Table 5-13.  The 

specimens in Group 2 with high strength concrete exhibited very good correlation with 

the experimental response parameters.  The largest error was less than 25%, which was 

obtained while estimating Ei .  The performance in predicting the response parameters for 

the specimens in Group a, which were tested under uniaxial bending, was better 

compared to the Group b specimens, which experienced biaxial bending.  For the 

majority of the specimens in Table 5-13, the error values determined for Po  and Ei were 

smaller than that determined for Kb .  For some of the specimens, very large error values 

were calculated for Kb and this was attributed to fact that for those specimens the 

experimental Kb values are close to zero. 

 

5.7. Materially and Geometrically Nonlinear Non-
Proportionally-Loaded RCFT Beam-Column Tests 

 

Constant axial load and monotonically increasing bending moment represents the 

loading conditions of column members in moment frame structures.  Since the force 

components are incremented in different proportions, this type of loading scheme is also 

known as non-proportional loading.  There exist several tests on RCFT members in the 

literature to understand their response under non-proportional loading (Tomii and Sakino, 

1979; Nakahara and Sakino, 1998; Varma 2000).  These tests are often conducted on 

simply supported members.  The constant axial load is first applied and then the bending 

moment is introduced at each end putting the member into single curvature as shown in 

Figure 5.108. 
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Table 5-13 Comparison of Computational and Experimental Results for an Eccentrically-Loaded RCFT Beam-Column Tests 
 

Experimental Results Computational Results |Error| (%) 
Specimen    

Label 
Ei     

(kN/mm) 
Po               

(kN) 
Kb        

( kN/mm) 
Ei      

(kN/mm) 
Po          

(kN) 
Kb         

( kN/mm) Ei    Po            Kb         
1a1 54.7 610 -1.8 50.6 606.6 -2.6 7.5 0.6 44.4 
2a1 63.6 700 -2.3 61.7 706.2 -3.1 3.0 0.9 34.8 
6a1 81.3 770 -3.4 59.1 769.6 -3.5 27.3 0.1 2.9 
7a1 69.8 870 -3.7 70.9 842.3 -3.5 1.6 3.2 5.4 
9a2 72.2 1000 -1.9 74.3 914.1 -2.2 2.9 8.6 15.8 

10a1 73.4 820 -3.4 69.2 835.9 -3.8 5.7 1.9 11.8 
13a2 163.4 1160 -4.5 123.1 1112.1 -4.4 24.7 4.1 2.2 

SHC1a1 560 1956 -5.7 436.6 2169.1 -6.9 22.0 10.9 21.1 
SHC3b1 550.9 2180 -1.1 512.3 2382.3 -7.1 7.0 9.3 545.5 
SHC4b1 563.2 2162 -14.9 515.6 2435.9 -9.3 8.5 12.7 37.6 
SHC5b1 249 2037 -10.1 263.8 2258.5 -5.1 5.9 10.9 49.5 
SHC6b1 153.6 1623 -8.6 156.7 1696.7 -3.1 2.0 4.5 64.0 
SHC7a1 72.5 680 -5 63.4 739.3 -3.2 12.6 8.7 36.0 
SHC8a1 44.1 513 -2.5 39.2 580.9 -2.3 11.1 13.2 8.0 

2’a1 43 393 -2.8 38.6 424.2 -0.9 10.2 7.9 67.9 
3’a1 14.7 232 -0.5 14.9 275.6 -0.6 1.4 18.8 20.0 
5’a1 11.3 210 na 10.7 224.8 -1 5.3 7.0 NA 
6’b1 48.2, 19.5 256, 275 0.4, 1.3 65.1, 23.9 299.0 2.6, 1.9 35.2, 22.6 16.8, 8.7 585.2, 49.1 
7’b1 15.7, 6.7 162.5, 162.5 1.5, 0.9 25.7, 9.4 191.9 1.8, 1.0 63.3, 40.1 18.1, 18.1 18.8, 7.2 

mean error 15.2 8.8 81.4 
standard deviation of error  15.8 6.0 166.8 

median error 8.5 8.7 28.0 
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Figure 5.108 RCFT Beam-Column under Non-Proportional Loading 

 
 The analysis of non-proportionally-loaded RCFT members is considered to be 

critical in order to assess the ability of the mixed finite element formulation when the 

material fibers experience strain reversals.  A mesh-convergence study was first 

performed to determine the finite element resolution producing consistent results.  A 

representative specimen was analyzed by varying number of elements and integration 

points.  A total number of 8 material fibers along the depth and width of the concrete core 

and the steel tube were defined.  A single layer of material fibers was introduced around 

the perimeter of the steel tube.  The results of the mesh convergence study are given in 

Figure 5.109 as moment vs. end rotation response.  In the legend of Figure 5.109, the first 

number indicates the number of finite elements while the second number denotes the 

number of integration point.  It can be seen that the computational load-deformation plots 

do not deviate from each other significantly as the mesh size gets smaller.  This 

observation is due to the fact that the inelastic curvatures are accurately estimated by the 

mixed finite element formulation.  In addition, the effect of geometric nonlinearity is 

reduced as the slenderness of the RCFT member ( L D/ ) is small.  Therefore, utilizing 2 

elements with 4 integration points was adopted as the mesh size to be used in the analysis 

of non-proportionally load RCFT beam-columns.  The constant displacement arc-length 

method with full Newton-Raphson solution algorithm was adopted in the analysis model 

(Yang and Kuo, 1994).  The controlling degree-of-freedom was selected as the in-plane 

rotation defined at the end of the RCFT beam-column with roller support.   

RCFT Beam-Column
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Figure 5.109 Mesh-Convergence of Non-Proportionally-Loaded RCFT Columns 

 
Two specimens representing the typical load-deformation response of RCFT 

columns under non-proportional loading were analyzed using the mixed finite element 

formulation.  The first specimen was tested by Tomii and Sakino (1979).  The 

experimental response exhibited approximately an elastic-plastic response without any 

significant strength deterioration.  The computational and experimental load-deformation 

behavior is presented in Figure 5.110.  There was a very good agreement between two 

sets of data in initial and post-peak stiffness.  The computational peak moment value was 

slightly larger than its experimental value.  This discrepancy might be due to 

overestimation of the gradient in yield strength of the steel tube due to the cold-forming 

process.          

 The next specimen analyzed using the mixed finite element formulation was 

selected from the experimental study by Nakahara and Sakino (1998).  A softening type 

of load-deformation response was observed during the test.  As can be seen in Figure 

5.111, excellent correlation was achieved in all significant response parameters such 

initial stiffness, post-peak stiffness, and peak moment values.  In Figure 5.111, the 

moment-rotation response was presented for the steel tube and the concrete core, 

independently.  This data was determined from the moment-curvature response of the 

cross-section located at the mid-length of the RCFT beam-column.  The curvature was 
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multiplied with the depth of the RCFT cross-section to obtain the moment-rotation 

response.  It was found that the deterioration in strength following the attainment of the 

peak moment was due to crushing of concrete.  The contribution of the concrete core to 

the moment capacity of the RCFT beam-column was determined to be approximately 

40%. 

 
Figure 5.110 Comparison of Computational and Experimental Results for a Non-

Proportionally-Loaded RCFT Beam-Column (Tomii and Sakino, 1979, Specimen III-3) 

 
 The breadth of the verification study was increased by analyzing several 

specimens from the experimental database by Tort and Hajjar (2003).  The analyses were 

conducted with a mesh density of 2 elements with 4 integration points.  The constant 

displacement arc-length algorithm with full-Newton-Raphson solution method was 

utilized (Yang and Kuo, 1994).  It was aimed to cover a comprehensive range of material 

and geometric properties while selecting the RCFT specimens.  In Table 5-14, the 

analyzed specimens are described by documenting their measured geometric and material 

properties.  The specimens were examined in two groups with respect the range of 

material strengths.  Group1 consisted of specimens having low strength materials while 

Group 2 cover the specimens constructed using high strength materials.  The right 

superscripts of “1” and “2” were attached to the labeling of the specimens to identify 

their classification with respect to the material strength.   
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Figure 5.111 Comparison of Computational and Experimental Results for a Non-

Proportionally-Loaded RCFT Beam-Column (Nakahara and Sakino, 1998, Specimen 

BR4-6-10-02) 

Table 5-14 Proportionally-Loaded RCFT Beam-Column Tests 
 

Specimen 
Label 

Es  
(MPa) 

f y  
(MPa) 

f c
'  

(MPa) 
D  

(mm) 
B  

(mm) 
t  

 (mm) P Po/  
L  

(mm) 
III-11 210915 289.4 20.6 100.1 100.1 2.97 0.1 300 
III-21 210915 288.4 20.6 100.1 100.1 2.97 0.2 300 
III-41 206010 288.4 20.6 100.1 100.1 3.00 0.4 300 
III-51 206010 288.4 20.6 100.1 100.1 3.00 0.5 300 
III-61 206009 288.4 20.6 100.1 100.1 3.00 0.6 300 

BR4-6-10-042 209001 310.0 119.0 200.0 200.0 6.17 0.4 600 
BR8-6-10-022 212001 781.2 119.0 200.0 200.0 6.39 0.2 600 
BC32-80-202 197000 600.0 110.0 305.3 305.3 8.90 0.2 1500 
BC32-80-402 197000 600.0 110.0 305.3 305.3 8.90 0.4 1500 
BC-32-46-202 196997 269.0 110.0 305.3 305.3 8.60 0.2 1500 
BC32-46-402 196997 269.0 110.0 305.3 305.3 8.60 0.4 1500 
BC48-46-202 204002 471.0 110.0 305.3 305.3 5.79 0.2 1500 

  

Figure 5.109 through 5.130 illustrate the comparison of experimental and 

computational load-deformation response of the specimens.  The computational results 

were presented for the steel tube and the concrete independently, where appropriate. 
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Figure 5.112 Comparison of Computational and Experimental Results for a Non-

Proportionally-Loaded RCFT Beam-Column (Tomii and Sakino, 1979, Specimen III-1) 
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Figure 5.113 Comparison of Computational and Experimental Results for a Non-

Proportionally-Loaded RCFT Beam-Column (Tomii and Sakino, 1979, Specimen III-2) 
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Figure 5.114 Comparison of Computational and Experimental Results for a Non-

Proportionally-Loaded RCFT Beam-Column (Tomii and Sakino, 1979, Specimen III-4) 
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Figure 5.115 Comparison of Computational and Experimental Results for a Non-

Proportionally-Loaded RCFT Beam-Column (Tomii and Sakino, 1979, Specimen III-5) 
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Figure 5.116 Comparison of Computational and Experimental Results for a Non-

Proportionally-Loaded RCFT Beam-Column (Tomii and Sakino, 1979, Specimen III-6) 
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Figure 5.117 Comparison of Computational and Experimental Results for a Non-

Proportionally-Loaded RCFT Beam-Column (Nakahara and Sakino, 1998, Specimen 

BR4-6-10-04) 
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Figure 5.118 Comparison of Computational and Experimental Results for a Non-

Proportionally-Loaded RCFT Beam-Column (Nakahara and Sakino, 1998, Specimen 

BR8-6-10-02) 
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Figure 5.119 Comparison of Computational and Experimental Results for a Non-

Proportionally-Loaded RCFT Beam-Column (Varma, 2000, Specimen BC32-80-20) 
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Figure 5.120 Comparison of Computational and Experimental Results for a Non-

Proportionally-Loaded RCFT Beam-Column (Varma, 2000, Specimen BC32-80-20) 
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Figure 5.121 Comparison of Computational and Experimental Results for a Non-

Proportionally-Loaded RCFT Beam-Column (Varma, 2000, Specimen BC32-80-40) 
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Figure 5.122 Comparison of Computational and Experimental Results for a Non-

Proportionally-Loaded RCFT Beam-Column (Varma, 2000, Specimen BC32-80-40) 

 

0

100

200

300

400

500

600

700

0 0.01 0.02 0.03 0.04 0.05 0.06

Average End Rotation (rad)

M
om

en
t (

kN
.m

)

Experiment
Analysis

 
Figure 5.123 Comparison of Computational and Experimental Results for a Non-

Proportionally-Loaded RCFT Beam-Column (Varma, 2000, Specimen BC32-46-20) 
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Figure 5.124 Comparison of Computational and Experimental Results for a Non-

Proportionally-Loaded RCFT Beam-Column (Varma, 2000, Specimen BC32-46-20) 
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Figure 5.125 Comparison of Computational and Experimental Results for a Non-

Proportionally-Loaded RCFT Beam-Column (Varma, 2000, Specimen BC32-46-40) 
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Figure 5.126 Comparison of Computational and Experimental Results for a Non-

Proportionally-Loaded RCFT Beam-Column (Varma, 2000, Specimen BC48-46-20) 
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Figure 5.127 Comparison of Computational and Experimental Results for a Non-

Proportionally-Loaded RCFT Beam-Column (Varma, 2000, Specimen BC48-46-20) 
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 The experimental and computational results achieved excellent correlation for 

specimens with wide ranges of material and geometric properties.  A detailed error 

analysis of the results is presented in Table 5-15, where the computational and 

experimental values for the response parameters of initial stiffness ( Ei ), peak moment 

( Mo ), and bounding stiffness ( Kb ) are compared.  The degree of correlation for Ei  and 

Mo were found to be similar for both Group 1 and Group 2 specimens.  However, very 

large error values of Kb  were obtained for some of the Group 1 specimens, which is 

attributed to fact that those specimens exhibit approximately an elastic-perfectly plastic 

response with small Kb  values.   

       
5.8. Materially and Geometrically Nonlinear Cyclically-Loaded 

RCFT Beam-Column Tests 
 
 The accuracy of the mixed-finite element formulation in simulating RCFT 

members under quasi-statically applied cyclic loading is studied in this section.  These 

tests provide useful information about the load-path dependency characteristics of these 

composite structural systems.     

 The computational model to analyze RCFT members in a configuration that is 

typical of many of the cyclic tests is illustrated in Figure 5.128.  A displacement-

controlled algorithm was utilized to trace the nonlinear cyclic load-deformation response.  

This is achieved by defining displacement constraints for the controlling node of the 

structural model in the direction of the applied loading.  First, the constant axial load is 

applied monotonically and then the specimens are subjected to a cyclic lateral 

displacement history.  The current mixed finite element formulation was developed such 

that the loads are only applied to the steel degrees of freedom.  Therefore, it is those 

degree-of-freedoms of the controlling node, where displacement histories are imposed. 

 The specimen by Sakino and Tomii (1981) is presented here first.  The loading 

scheme shown in Figure 5.128 was introduced, where the specimen experienced double 

curvature under constant axial load and cyclic shear force.  The analysis was conducted 

until a drift ratio of 2.5% is reached.  Two elements with 3 integration points each were 

utilized to model the RCFT column.  A total number of 10 material fibers were 
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Table 5-15 Comparison of Computational and Experimental Results for Non-Proportionally-Loaded RCFT Beam-Column 
Tests 

Experimental Results Computational Results |Error| (%) 

Specimen        
Label 

Ei       

(kN.m/rad) 
Mo         

(kN.m) 
Kb         

( kN.m/rad) 
Ei    

(kN.m/rad) 
Mo          

(kN.m) 
Kb         

( kN.m/rad) 
Ei       Mo         Kb       

III-11 2769 14.7 10.1 3280 17.4 16.0 18.5 18.4 58.8 
III-21 3138 15.1 1.6 3375 17.0 15.1 7.6 12.5 869.7 
III-31 3092 14.5 -1.8 3279 15.7 12.8 6.1 8.3 803.6 
III-41 3218 13.4 70.0 3236 14.6 7.2 0.6 9.0 89.7 
III-51 3347 12.3 116.5 3193 13.3 18.9 4.6 7.5 83.8 
III-61 2864 10.9 113.0 3193 11.4 51.1 11.5 3.9 54.8 

BR4-6-10-022 64935 194.0 -946.4 71912 189.6 -724.9 10.7 2.3 23.4 
BR4-6-10-042 61486 165.7 -2797.8 70198 180.6 -2961.1 14.2 9.0 5.8 
BR8-6-10-022 65000 328.0 -2329.8 72688 326.3 -2062.1 11.8 0.5 11.5 
BC32-80-202 61320 915.7 -1743.1 65919 940.9 -4311.9 7.5 2.7 147.4 
BC32-80-402 59288 796.1 -14219.0 74667 814.0 -934.7 25.9 2.3 93.4 
BC-32-46-202 62377 602.9 -1799.0 73254 599.4 -2178.4 17.4 0.6 21.1 
BC32-46-402 56673 526.3 -9639.5 73182 584.5 -9249.1 29.1 11.1 4.1 
BC48-46-202 42719 582.4 -2276.0 65526 573.7 -2362.0 53.4 1.5 3.8 

mean error 15.6 6.4 162.2 
standard deviation of error 13.5 5.3 289.2 

median error 11.7 5.7 56.8 
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defined along the depth of the cross-section as shown in Figure 5.129.  The comparison 

of computational and experimental response is illustrated in Figure 5.130.  Very good 

correlation with respect to the maximum shear forces and the evolution of the stiffness 

were achieved.  However, the computational results slightly underestimated strength 

degradation throughout the loading history, which is attributed to the discrepancy 

between computational experimental values of the rate of reduction of the bounding 

surface.  Figure 5.131 shows the typical stress-strain response experienced by concrete 

and steel fibers located at the fixed-end of the specimen.     

 
Figure 5.128 Computational Modelling of Cyclically-Loaded RCFT Beam-Column Tests 
 

 
Figure 5.129 Fiber Discretization of RCFT Cross-Section 

Single Curvature Double Curvature 

RCFT 
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Figure 5.130 Comparison of Computational and Experimental Results for a Cyclically-

Loaded RCFT Beam-Column (Sakino and Tomii, 1981, Specimen CIIS3-3) 

 
 

 
Figure 5.131 Stress-Strain Response of Steel and Concrete Fibers (Sakino and Tomii, 

1981) 
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 The RCFT beam-column specimen SR6A4C by Inai et al. (2004) was analyzed 

using the mixed finite element formulation.  The specimen was tested under constant 

axial load and cyclic shear loading putting the member into double curvature as described 

in Figure 5.128.  The same mesh size was used as Specimen CIIS3-3 presented above.  

The comparisons of the experimental and computational results are shown in Figure 

5.132.  Specimen SR6A4C exhibited very good correlation with the experimental results 

except that the maximum moment capacity was slightly underestimated, which might be 

attributed to the discrepancy in the experimental and computational values of the initial 

size of the bounding surface or the rate of increase in size of the bounding surface until 

the initiation of local buckling.  Figure 5.130 shows the typical stress-strain response 

experienced by concrete and steel fibers located at the fixed-end of the specimen.    

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.132 Comparison of Computational and Experimental Results for a Cyclically-

Loaded RCFT Beam-Column (Inai et al., 2004, Specimen SR6A4C) 
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conditions was examined by analyzing the cruciform RCFT frame tested by Kawaguchi 

and Morino (2001) as shown in Figure 5.134.  A simply supported RCFT column is 

framed by in-plane and out-of-plane steel girders.  The in-plane steel girders are 
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loading scheme was created by introducing axial forces to the steel struts attached to the 

ends of the steel girders so that a deformation pattern identical to the experiment was 

obtained.  The effect of gravity loading was represented by applying constant forces to 

the end of the out-of-plane steel girder and to the top of the RCFT column.  The RCFT 

column and the in-plane steel girders were modeled with 3 elements and 4 integration 

points.  The connection and girders in the specimen were designed to remain elastic.  The 

computational model adopted to perform the analysis can be seen in Figure 5.135.  The 

number of material fibers along the depth was decided as 10 for both the RCFT column 

and steel girders.  The cross-section discretization scheme, illustrating the geometric 

location and properties of the material fibers, is shown in Figure 5.136.  

 

 

 
Figure 5.133 Stress-Strain Response of Steel and Concrete Fibers (Inai et al., 2004) 
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nodes.  Excellent correlation was achieved with respect to the lateral stiffness of the 

frame.  However, the computational results slightly underestimated the experimental peak 

shear load, where the largest error was obtained as 20% at a chord rotation level of -0.03.  

This discrepancy is mainly attributed to the mismatch in the experimental and 

computational values of initial bounding surface of the steel tube. 

 
Figure 5.134 Cyclically-Loaded RCFT Cruciform Frame (Kawaguchi and Morino, 2001) 
 

 
Figure 5.135 Computational Modeling of Cyclically-Loaded RCFT Cruciform Frame 
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Figure 5.136 Fiber Discretization of RCFT and Steel Cross-Sections 
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Figure 5.137 Comparison of Computational and Experimental Results for a Cyclically-

Loaded RCFT Cruciform Frame (Kawaguchi and Morino, 2001) 

The distribution of the damage was investigated based on the stress-strain 

response of material fibers over the cross-sections located at the integration points along 

the RCFT column and steel girders.  Figure 5.138 through Figure 5.143 shows the stress-

strain response monitored at key locations of the cruciform frame.  At each integration 

point, several material fibers along the depth of the cross-section were studied.  The 

material fibers at the mid-height of the RCFT column experienced significant cracking 

and crushing of the concrete fibers.  The steel tube material fibers underwent yielding in 

both tension and compression.  Local buckling was also observed.  However, no strength 

degradation took place since the RCFT column has a small D t/ ratio of 22.  As can be 

seen in Figure 5.144 and Figure 5.145, the material fibers of the steel girders were found 

to exhibit a linear response. 
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Figure 5.138 Stress-Strain Response of Concrete Fibers (Kawaguchi and Morino, 2001) 
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Figure 5.139 Stress-Strain Response of Concrete Fibers (Kawaguchi and Morino, 2001) 
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Figure 5.140 Stress-Strain Response of Concrete Fibers (Kawaguchi and Morino, 2001) 
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Figure 5.141 Stress-Strain Response of Steel Fibers (Kawaguchi and Morino, 2001) 
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Figure 5.142 Stress-Strain Response of Steel Fibers (Kawaguchi and Morino, 2001) 
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Figure 5.143 Stress-Strain Response of Steel Fibers (Kawaguchi and Morino, 2001) 
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Figure 5.144 Stress-Strain Response of Steel Fibers (Kawaguchi and Morino, 2001) 
 

 
 

 
Figure 5.145 Stress-Strain Response of Steel Fibers (Kawaguchi and Morino, 2001) 
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 The portal frame specimen, 21C30C, with RCFT columns and a steel girder by 

Kawaguchi (2000), shown in Figure 5.146, was also analyzed.  The analysis was 

conducted under constant axial load and cyclic shear loading.  The shear loading was 

applied at the supports, putting the columns into double curvature.  A displacement-

controlled loading scheme was utilized by introducing the shear loading into steel struts 

having large axial and flexural stiffness.  The steel struts were attached to the supports of 

the RCFT columns.  Three elements per member with 4 integration points were defined 

in the analysis model.  The number of material fibers along the depth was 8 and 10 for 

the RCFT columns and steel girder, respectively.       

 
Figure 5.146 Computational Modeling of Cyclically-Loaded RCFT Portal Frame 

 

 Figure 5.147 illustrates the computational and experimental load-deformation 

response of the specimen.  Accurate correlation is evident between the two sets of data 

where the stiffness of the specimen is well predicted throughout entire loading history.  

However, the computational results underestimate the peak lateral load value and a 

maximum error of 18% is obtained.  The discrepancy is mainly attributed to the 

difference in computational and experimental values of the bounding surface radius and 

the rate of increase in bounding surface radius prior to local buckling, which leads to 

initiation of inelastic response earlier due to underestimation of the bounding surface 

parameters in the steel constitutive model.     
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 The damage experienced by structural members was investigated by documenting 

the stress-strain response of several material fibers along the depth of the cross-sections.  

The cross-sections were selected at the critical points along the specimen lengths.  As can 

be seen in  Figure 5.148 through Figure 5.157, the material fibers of the RCFT cross-

sections located close to the supports experience significant damage in the form of 

concrete crushing, concrete cracking, yielding, and local buckling.  On the other hand, the 

material fibers of the cross-sections located at the mid-height of the RCFT columns 

exhibited less damage due to the fact that the columns underwent double curvature with 

inflection points located approximately at the mid-height.  Due to the small D t/ ratio of 

the RCFT columns, local buckling did not cause any strength degradation.  Figure 5.158 

and Figure 5.159 illustrate that the material fibers of the steel girders remained elastic 

throughout the loading history.          
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Figure 5.147 Comparison of Computational and Experimental Results for a Cyclically-

Loaded RCFT Cruciform Frame (Kawaguchi and Morino, 2001) 
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Figure 5.148 Stress-Strain Response of Concrete Fibers (Kawaguchi, 2000) 

 
 

 

 
Figure 5.149 Stress-Strain Response of Concrete Fibers (Kawaguchi, 2000) 
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Figure 5.150 Stress-Strain Response of Concrete Fibers (Kawaguchi, 2000) 

 

 

 
Figure 5.151 Stress-Strain Response of Concrete Fibers (Kawaguchi, 2000) 
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Figure 5.152 Stress-Strain Response of Concrete Fibers (Kawaguchi, 2000) 

 

 

 
Figure 5.153 Stress-Strain Response of Steel Fibers (Kawaguchi, 2000) 

 

-300

-200

-100

0

100

200

-0.0015 -0.001 -0.0005 0 0.0005 0.001

Strain

St
re

ss
 (M

Pa
)

(II) 

-600

-400

-200

0

200

400

600

-0.03 -0.02 -0.01 0 0.01 0.02

Strain

St
re

ss
 (M

Pa
)

(I)

-12

-8

-4

0

4

-0.0009 -0.0006 -0.0003 0 0.0003

Strain
St

re
ss

 (M
Pa

)

(II) 

-24

-18

-12

-6

0

6

-0.02 -0.01 0 0.01 0.02

Strain

St
re

ss
 (M

Pa
)

(I)

x 

z 

x 

y 

(I) 

(II) 

x 

z 

x 

y 

(I) 

(II) 



 281

 

 
Figure 5.154 Stress-Strain Response of Steel Fibers (Kawaguchi, 2000) 

 

 

 
Figure 5.155 Stress-Strain Response of Steel Fibers (Kawaguchi, 2000) 

 

-100

-75

-50

-25

0
-0.0005 -0.00025 0

Strain

St
re

ss
 (M

Pa
)

(II)

-600

-400

-200

0

200

400

-0.015 -0.01 -0.005 0 0.005

Strain

St
re

ss
 (M

Pa
)

(I) 

-200

-100

0

100

-0.001 -0.0005 0 0.0005

Strain
St

re
ss

 (M
Pa

)

(II) 

-600

-400

-200

0

200

400

600

-0.02 -0.01 0 0.01

Strain

St
re

ss
 (M

Pa
)

(I)

x 

z 

x 

y 

(I) 

(II) 

x 

z 

x 

y 

(I) 

(II) 



 282

 

 
 

Figure 5.156 Stress-Strain Response of Steel Fibers (Kawaguchi, 2000) 
 

 

 
 

Figure 5.157 Stress-Strain Response of Steel Fibers (Kawaguchi, 2000) 
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Figure 5.158 Stress-Strain Response of Steel Fibers (Kawaguchi, 2000) 
 

 

 
Figure 5.159 Stress-Strain Response of Steel Fibers (Kawaguchi, 2000) 
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5.9. Materially  Linear and Geometrically Nonlinear 
Dynamically-Loaded RCFT Beam-Column Tests 

 

The performance of the mixed finite element formulation under dynamic loads 

was investigated by analyzing materially linear and geometrically nonlinear benchmark 

problems from the literature.  The first study consists of a clamped beam subjected to a 

step loading.  The description of the beam is given in Figure 5.160 along with the 

geometric and material properties.  The computational model was constructed by defining 

10 elements and 4 integration points.  The number of elements was kept as the same in 

the published results by Hsiao and Jang (1989).  The time step size was chosen as 50 

μsec. The mass of the beam was assumed to be lumped at the nodal points and only the 

steel tube degrees-of-freedom were associated with masses, which was consistent with 

the static loading, where the applied loads are introduced to the steel tube degrees-of-

freedom.  The damping of the beam was taken as zero.  The stiffness of the composite 

section was shared equally between the steel tube and the concrete core.  The Newmark-β 

(γ = 0.5, β = 0.25) time integration scheme was utilized to solve for the equation of 

motion.  The computational results from the mixed finite element formulation were 

compared to the results given by Hsiao and Jang (1989) in Figure 5.161and excellent 

agreement was achieved.  

 

 
 

Figure 5.160 Clamped Beam Subjected to Step Loading 

b 
h 

F(sec)

L/2 L/2

E = 206850 MPa 
L = 508 mm 
b = 25.4 mm 
h = 3.175 
ρ = 2710.06 kg / m3 

F (sec) 

Time (sec)

2.85 kN 



 285

0

5

10

15

20

25

0 0.002 0.004 0.006
Time (sec)

D
is

pl
ac

em
en

t (
m

m
)

Hsiao and Yang (1989)
Mixed Finite Element

 
Figure 5.161 Dynamic Response of Clamped Beam Subjected to Step Loading 

 
The second dynamic benchmark problem is a cantilever beam subjected to a 

concentrated end loading as shown in Figure 5.162.  The beam first undergoes an end 

loading of finite duration, and then experiences free vibration.  The mass of the beam was 

assumed to be lumped at the nodal points and only the steel degrees-of-freedom were 

associated with masses.  A damping coefficient (μ) of 0.10 was introduced when the 

beam undergoes free vibration.  The stiffness of the composite section was distributed 

equally to the steel tube and the concrete core.  The analysis model was constructed by 

defining 4 elements and 4 integration points.  The time step size was selected as 0.05.  

The Newmark (γ = 0.5, β = 0.25) time integration scheme was utilized to solve for the 

equation of motion (Chopra, 1995).  Figure 5.163 shows the load-deformation results 

from the mixed finite element formulation and the study by Hsiao and Jang (1989).  

Excellent correlation is evident between the two sets of data.        
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Figure 5.162 Cantilever Beam Subjected to End Loading 
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Figure 5.163 Dynamic Response of Cantilever Beam Subjected to End Loading 
 
 
5.10. Materially  Linear and Geometrically Nonlinear 

Dynamically-Loaded RCFT Beam-Column Tests 
 

The ability of the mixed-finite element formulation in simulating the materially 

and geometrically nonlinear response of RCFT structures under seismic forces was 

studied based on the experimental study by Herrera (2005).  Herrera (2005) conducted a 

test on an approximately half scale, two bay-four story RCFT frame.  As described in 

Figure 5.164, in addition to the four stories above ground, the RCFT frame also had a 

basement-level.  The test was run using pseudo-dynamic testing method, where the 

dynamic equation of motion is solved numerically at each time step to determine the 

displacement imposed on the structure.  In the equation of motion, the mass and damping 

matrices of the structure were defined computationally while the internal element forces 

were determined experimentally.  The P-Δ effects were represented through 

computationally defined leaning columns.  The loading was applied to the structure 

through the loading beams attached to the mid-points of the steel girders.  The frame was 
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free of slab but its effect on the structural response was accounted for by the loading 

beams.  In the analysis model, the number of elements was determined according to the 

instrumentation plan of the structure, where a total number 90 RCFT elements and 100 

steel beam elements were defined  The loading beams and rigid links were modeled with 

elastic beam elements with large stiffness values.  The leaner column was modeled as a 

geometrically and materially nonlinear steel beam-column and its cross-sections stiffness 

values were determined as the summation of the cross-section stiffness values of the 

columns in a single story.  The mass of the building was lumped on the nodes along the 

leaning column.  A stiffness and mass proportional damping was assumed with 2% 

viscous damping having proportionality factors of 0.154667 and 0.001194 for the 

stiffness and mass matrices, respectively.   

 
 

Figure 5.164 RCFT Test Structure by Herrera (2005) 
 

The experiment was conducted under different hazard levels.  First, the structure 

was loaded according to the Northridge Canoga Park (1994) ground motion record that is 

scaled to the design basis earthquake level.  Then, the structure is straightened and the 

experiment was conducted on the same structure with the Northridge Canoga Park (1994) 

ground motion record that is scaled the maximum considered earthquake level.  The finite 

element analysis of the structure was performed by first applying the design basis 
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earthquake loading.  In order to simulate the effect of connections, in the analysis model, 

rigid links were introduced to the end of the steel girders.  The sizes of these links were 

determined based on the connection dimension of the structure. 
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Figure 5.165 and 
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Figure 5.166 show the computational and experimental roof-drift time history 

results corresponding to the design level and maximum considered earthquake loadings, 
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respectively.  The results for the maximum considered earthquake were produced by 

subtracting residual drift at the end of the design level earthquake loading.  For both sets 

of results good agreement was attained with experimental data.  However, under 

maximum considered earthquake loading, the residual drift was overestimated, which 

might be due the fact the analysis following the design basis earthquake loading was 

performed without any straightening applied to the structure that might lead to excessive 

residual deformations.  Figure 5.167–Figure 5.170 exhibit story shear vs. drift result for 

the 1st and 2nd story of the test structure.  It can be seen that the experimental shear force 

levels were successfully predicted by the analysis model.  There exist some discrepancy 

in the deformation demand values which might be attributed to the factors that the 

analysis model could not capture adequately including flexibility of the connections and 

variation damping across different structural members. 
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Figure 5.165 Roof Drift Time History Results for Design Basis Earthquake Loading 
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Figure 5.166 Roof Drift Time History Results for Maximum Considered Earthquake 

Loading 
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Figure 5.167 Story Shear vs, Intersory Drift Response at the 1st Story for the Design 

Basis Earthquake Level 
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Figure 5.168 Story Shear vs, Intersory Drift Response at the 2nd Story for the Design 

Basis Earthquake Level 
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Figure 5.169 Story Shear vs, Intersory Drift Response at the 1st Story for the Maximum 

Considered Earthquake Level 
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Figure 5.170 Story Shear vs, Intersory Drift Response at the 2nd Story for the Maximum 

Considered Earthquake Level 

 
5.11. Materially and Geometrically Nonlinear Monotonically-

Loaded Steel Girders 
 
 In order to verify the local buckling characteristic of steel girders, a total number 

of 5 specimens were studied by Lukey and Adams (1969).  The geometric and material 

properties of these specimens are summarized in Table 5-16.  The specimens were 

analyzed using the mixed finite element formulation adopting a model as described in 

Figure 5.171, where steel girder is loaded under three point bending.  The computational 

and experimental results are presented in Figure 5.172 through Figure 5.176 and excellent 

correlation can be noticed between two sets of data. 

Table 5-16 Geometric and Material Properties of Specimens to Verify the Steel Model 
 

Specimen 
d 

(mm) 
bf 

(mm) 
tf 

(mm) 
tw 

(mm) 
fyf 

(MPa) 
fyw 

(MPa) lf lw lc eslbf 
Ksg 

(MPa) 
B1 200.2 102.6 5.3 4.4 373.0 396.5 0.419 1.899 1.945 -0.0159 -1103.2 
B3 200.2 86.1 5.3 4.4 373.0 396.5 0.352 1.899 1.932 -0.0263 -897.6 
B4 200.2 94.0 5.3 4.4 373.0 396.5 0.384 1.899 1.938 -0.0181 -1047.7 
C3 250.4 85.9 5.3 4.6 373.2 352.0 0.353 2.190 2.218 -0.0159 -1103.2 
C5 250.4 89.9 5.3 4.6 373.2 352.0 0.369 2.190 2.221 -0.0159 -1103.2 
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Figure 5.171 Computational Modeling of Specimens by Lukey and Adams (1969) 

 

 
Figure 5.172 Comparison Experimental and Computational Results for Specimen B1 by 

Lukey and Adams (1969) 

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

0.00 0.02 0.04 0.06 0.08
Rotation (rad)

M
om

en
t (

kN
.m

)

Computational

Experimental

Local  Buckling 



 294

 
Figure 5.173 Comparison Experimental and Computational Results for Specimen B3 by 

Lukey and Adams (1969) 
 

 
Figure 5.174 Comparison Experimental and Computational Results for Specimen B4 by 

Lukey and Adams (1969) 
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Figure 5.175 Comparison Experimental and Computational Results for Specimen C3 by 

Lukey and Adams (1969) 

 
Figure 5.176 Comparison Experimental and Computational Results for Specimen C5 by 

Lukey and Adams (1969) 
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5.12. Materially and Geometrically Nonlinear Cyclically-
Loaded Steel Girders 

 
 The final verification study was performed to tests the performance of the mixed 

finite element formulation in simulating the cyclically loaded steel girders experiencing 

local buckling damage state.  The steel girder subassembly by Kim et al. (2002) was 

studied as shown in Figure 5.177.  A computational model of the test-setup was prepared 

using the mixed finite element formulation.  The column (W24x76) was defined with 4 

finite elements while the girder (W30x99) was modeled with 3 elements per member.  

The number of integration points was selected as 3 and a total number of 10 material 

fibers were defined for the steel cross-section as shown in Figure 5.136.  A good 

correlation was achieved between the experimental and computational results as can be 

seen Figure 5.178. 

 
Figure 5.177 Test Setup for RC03 (Kim et al., 2002) 
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Figure 5.178 Comparison Experimental and Computational Results for Specimen RC03 

by Kim et al. (2002) 
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Chapter 6 
 

6. Seismic Demand Evaluation of RCFT Frames 
 
6.1. Introduction 
 
 The effects of earthquake induced forces on structures in the forms of energy, 

force, and deformation, and other structural response parameters are often termed as 

seismic demand.  Within a performance-based design framework, seismic demand 

evaluation is critical for understanding the typical inelastic characteristics of structures 

and it sheds light on the significance of the limit states, progression of damage, and 

coupling of the global and local response.  Seismic demand evaluation is often conducted 

by analyzing multiple structures under a series of seismic loading having various 

intensities.  The information obtained from these analyses can be used to establish a 

relation between structural response parameters and the intensity of the hazard level.  

Knowledge about the load and deformation levels likely to be experienced by the RCFT 

frames thus provides guidance to engineers in design decisions to satisfy the targeted 

performance objectives.  In addition, the dispersion in the structural response parameters 

helps quantify the uncertainties and randomness in the demand evaluation process.  The 

quantified expressions of uncertainty and randomness are often introduced as demand 

factors in the design provisions.   

 The chapter reports the results of demand analysis of RCFT frames through 

nonlinear time history analyses.  Three-story and nine-story frame structures were 

analyzed under a suite earthquake records representing 2% in 50 year, 10% in 50 year, 

and 50% in 50 year hazard levels.  The results are presented in terms of structural 

response parameters describing the structural response with a focus on considering the 

composite interaction observed in RCFT frames.  The statistical measures of the 

structural response are discussed. Through these examples, a general methodology for 

characterizing demand within RCFTs at several local and global levels is presented.      
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6.2. Selection of Ground Motion Records 
 

 The selection of earthquake records representing the targeted hazard level is an 

important step in seismic demand analysis that affects the scatter in the structural 

response parameters from nonlinear time history analysis.  Therefore, the number and 

type of the records should be chosen in a way that the record-to-record variability of the 

structural response is reduced.  This can be achieved by performing the selection process 

based on ground motion parameters that have adequate representation of the intensity, 

frequency content, and duration properties since they significantly affect the inelastic 

behavior of structures.  However, the derivation of such a comprehensive parameter is 

challenging since it is often dependent on the structural system and the performance level 

being evaluated (Krawinkler et al., 2003).   

 In seismic design provisions, earthquake loading is often represented in the form 

of an acceleration spectrum derived for a single degree-of-freedom system.  The shape 

and amplitude of the acceleration spectra define the ground motion characteristics 

corresponding to the desired hazard level.  In this research study, the spectral acceleration 

value at the fundamental period of the structure ( Sa ) will be used as the primary ground 

motion parameter while selecting the earthquake records. Despite the fact that Sa alone is 

not the governing parameter to affect the seismic demand, the biases in the demand 

evaluation that can be generated due to the ignorance of the frequency content and 

duration can be reduced by selecting the earthquake records from a narrow band of 

magnitude and distance pairs (Krawinkler et al., 2003; Bommer and Acevedo, 2004).         

 There exist three different sources where ground motion records are available to 

the engineers.  Artificial ground motion records are generated through deriving a power 

spectral function from the acceleration spectrum and then developing sinusoidal signals 

with random phase angles and amplitudes.  Integrating these signals and performing 

iterative operations produces ground motion records exhibiting a very close match with 

the acceleration spectrum given in the design provisions.  However, the use of artificial 

ground motion records is often not recommended due to their common high frequency 

content with excessive number of cycles (Bommer and Acevedo, 2004).  Alternative to 
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artificial ground motion records, synthetic ground motion records can be derived from 

advanced seismological models.  Despite their comprehensiveness in accounting for a 

large number seismological parameters (e.g., path, site effects), the use of synthetic 

ground motion records requires significant expertise in seismology (Bommer and 

Acevedo, 2004).  The last category of ground motion records are obtained from past 

earthquakes around the world.  The current databases compiled at several earthquake 

research institutes offer detailed search options with respect to an array of characteristics 

of past earthquakes.  In this research study, the demand evaluation will be performed 

using real earthquake records.  A single database will be utilized to obtain the records so 

that a uniform processing of the records will be ensured. 

 The earthquake records can be categorized as near-field and far-field with respect 

to their location to the active fault.  The near field earthquake records exhibit distinct 

directivity effects creating a high energy demand for the structures in the form a pulse- 

type motion.  The near-fault earthquake records often have a large intensity level that 

breach the acceleration spectrum available in the design codes.  In this research study, the 

near fault earthquake records will be eliminated while conducting the seismic demand 

analysis and only far-field earthquake records will be considered.  This approach works 

well for western US earthquakes since the extent of damage targeted in performance-base 

design provisions are relevant for far-filed earthquake records (Krawinkler et al., 2003). 

 The ground motion is subjected to amplification or deamplification as it 

propagates through the soil strata.  The rigidity of the soil layer underlying the structures 

affects the intensity of the ground motions.  This necessitates including site classification 

as a parameter while choosing the earthquake records for demand evaluation.  It was 

assumed that the buildings considered in this study are located on stiff soil conditions. 

 Medina (2002) collected a total number 40 earthquake records from the PEER 

strong motion database, which were all recorded on NEHRP Site Class D soil.  The 

magnitude and distance pair of the records were identified as Large Magnitude Small 

Distance without any pulse-type near-field characteristics.  The earthquake records used 

in this research study came from set provided by Medina (2002). 
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 The scaling of the earthquake records to match the design acceleration spectrum 

was performed based on spectral acceleration ( Sa ) to minimize the difference between 

design and median spectra for the first mode period of the structure.  The records with a 

scale factor greater than 4 were eliminated since large scaling reduces the advantage of 

using real records and also weak records scaled to a higher level may produce lower 

demands than unscaled records (Shome et al., 1998; Bommer and Acevedo, 2004; 

Iervolino, 2004).  The number of earthquake records was further reduced based on the 

study by Shome et al. (1998), where it was concluded that “the scaling of records within a 

bin to the bin median spectral acceleration produces unbiased estimates of the nonlinear 

response median”.  The earthquake records were selected in a manner that the Sa  on the 

median spectrum ( Sa
m ) attains a value close to the target Sa  on the design response 

spectrum ( Sa
d ) as shown in Figure 6.1. 

 
Figure 6.1 Selection of Earthquake Records 
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 Multiple three-story RCFT frame structures were subjected to earthquake records 

representing 2% probability of exceedence in 50 years termed as “2%/50” and to 

earthquake records with 10% probability of exceedence in 50 years termed as “10%/50”.  

The structures were designed in three-dimensions following up-to-date design provisions 

including  ASCE 7-02 (2003), IBC (2003), AISC-LRFD (2005), and AISC Seismic 

Provisions for Structural Steel Buildings 2002 (LaFore and Hajjar, 2005; Gartner and 

Hajjar, 2006).  See LaFore and Hajjar (2005) and Gartner and Hajjar (2006) for details of 

the design of these three-dimensional structures and the associated two-dimensional 

planar frames that were extracted and analyzed in this work.  The RCFT columns of the 

frames were designed utilizing a wide range of material and geometric properties.  The 

variation generated in the proportions of the steel and concrete among the designed 

frames revealed the sensitivity of the seismic behavior against the degree and type of 

composite interaction.  Table 6-1 illustrates the ranges of material and geometric 

properties of the RCFT columns used in the studied frames. 

Table 6-1 Summary of Geometric and Material Properties of RCFT Columns 

Frame Designation # of Stories f’c (MPa) fy (MPa) D/t L/D 

IIIa 3 27 317 35, 50 7, 8 

IIId 3 110 551 67 7 

 

The buildings were all assumed to be located in Los Angeles.  The soil conditions 

were assumed to be on NEHRP Site Class D.  Utilizing the NEHRP Maximum 

Considered Earthquake Maps and adjusting with respect to the soil conditions, the 

maximum considered earthquake spectral response acceleration for short period ( S MS ) 

and the maximum considered earthquake spectral response acceleration at 1 period ( S M1 ) 

were obtained s 1.5g and 0.9g, respectively.  Therefore, the design spectrum representing 

earthquake records to have 2%/50 and 10%/50 hazard levels can derived as shown in 

Figure 6.2 assuming 2% damping. 

The masses of the designed frames were assumed to be lumped at the joints.  The 

dead loads and the proportion of the live loads due to movable partitions were considered 

to contribute to the total mass.  The computational models were constructed without 
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consideration of the connection regions.  The ignorance of the deformation of the panel 

zone regions was assumed to be compensated with the reduced stiffness introduced by 

using centerline dimensions of the columns and girders.  Despite the crudeness 

introduced in strength demands, this approach estimates the deformation demands with 

sufficient accuracy so that they can be used in performance evaluations, which are often 

driven by displacements (Gupta and Krawinkler, 1999).    

 
Figure 6.2 Spectrum of Acceleration at Various Hazard Levels 

 

 Both RCFT columns and steel girders were analyzed using the mixed-finite 

element method presented in Chapter 2.  The RCFT columns were simulated with one 

finite element and three integration points along the element length.  The steel girders 

were modeled with multiple elements per member as needed to account for the transverse 

point loads due to gravity from the out-of-plane beams framing into the span of the 

girders.  The number of integration points for the beams were also kept as three.  The 

number material fibers along the depth of the RCFT and steel cross-sections were chosen 

as eight and ten, respectively.  Considering the verification studies presented in Chapter 

5, the aforementioned mesh density adopted in the analysis models was found to be 

satisfactory.  The Newmark-Beta (γ = 0.5, β = 0.25) time integration scheme was 
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matrix (C) of the structures was calculated combining their mass (M) and stiffness (K) 

matrices as follows: 

 C M K= +α βc c             [6.1] 

where:  αc is the mass proportionality factor, βc is the stiffness proportionality factor 

The calculation of αc and βc  was conducted by assigning a viscous damping ratio (ξ ) of 

2% for the 1st and 3rd modes of the structures.  The 2% damping ratio was selected 

assuming that the response of RCFT frames exhibit similar damping characteristics with 

steel structures (Muhummud, 2004; Herrera, 2005;).  Considering Rayleigh damping 

αc and βc were calculated as follows: 
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1 3
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+
2

1 3
         [6.3] 

where: w1 is the 1st mode frequency, w3  is the 3rd mode frequency 
  

The nonlinear time history analyses were conducted following the application of 

100% of the gravity loads consisting of live and dead loads.  The factored gravity loads 

were sustained on the structure during the application of the earthquake loading (FEMA 

356, 2000).  The time step for the analysis was selected to be smaller than the time 

interval defined for the ground motions records.  Therefore, the time step was often 

selected to be less than 0.01 sec.  

6.2.1. Time-History Analysis Results  
 
 Frame IIIa (as classified by LaFore and Hajjar, 2005) was chosen to represent 

RCFT structures having moderate values of geometric and material properties.  As it is 

detailed in Figure 6.3, Frame IIIa consisted of three stories and four bays of RCFT 

columns and steel girders.  The periods of vibration corresponding to the first three 

modes were determined by performing an eigen value analysis, which produced 0.618 
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sec, 0.349 sec, and 0.201 sec for the 1st, 2nd, and 3rd modes, respectively.  From Equations 

6.2 and 6.3, αc  of 0.307 and βc of 0.0009656 were calculated. 

 
Figure 6.3 Description of Frame IIIa (LaFore and Hajjar, 2005) 

 
 A total number of 12 ground motion records were selected.  Table 3-1Table 6-2 

summarizes the characteristics of the chosen earthquake records including peak ground 

acceleration (PGA), moment magnitude (Mw), distance to the source (Rs), duration (t), 

and the scaling factor to 2%50 design acceleration spectra.  It can be noticed from Table 

6-2, the earthquake motions were recorded between 14 to 40 km distances away from the 

fault.  The response spectrum of the scaled ground motions with respect to Sa can be seen 

in Figure 6.4. 

Table 6-2 Earthquake Records Selected For Frame IIIa Scaled to 2%/50 
 

Record 
ID Event Year Mw Rs 

(km) PGA(g) Duration 
(sec) 

Scale Factor 

IV79chi Imperial Valley 1979 6.5 28.7 0.27 40.0 1.48 

LP89cap Loma Prieta 1989 6.9 14.5 0.443 40.0 0.97 

LP89g04 Loma Prieta 1989 6.9 16.1 0.212 39.9 1.80 

LP89hda Loma Prieta 1989 6.9 25.8 0.279 39.6 1.45 

NR94cen Northridge 1994 6.7 30.9 0.322 30.0 1.83 

NR94cnp Northridge 1994 6.7 15.8 0.42 25.0 0.70 

NR94far Northridge 1994 6.7 23.9 0.273 30.0 1.47 

NR94fle Northridge 1994 6.7 29.5 0.24 30.0 1.69 

NR94stc Northridge 1994 6.7 13.3 0.368 30.0 2.14 

NR94stn Northridge 1994 6.7 30 0.474 31.6 1.73 

SH87icc Superstition Hills 1987 6.7 13.9 0.358 40.0 1.71 

 

Girders: 
fy = 345 MPa 
1 – W460x177 
2 – W610x82 
RCFT Columns: 
fy = 317 MPa 
f’c = 27.6 MPa 
1 – HSS482x483x9.53 
2 – HSS559x559x15.9 
m1 = 11224 kg 
m2 = 13606 kg  
m3 = 13606 kg 
m4 = 7039 kg 
m5= 11697 kg 
m6= 11697 kg 4 bays @ 9.1 m = 36.4 m 

3 
st

or
y 

@
 4

.0
 m

 =
 1

2.
0 

m
 

m1 m2 m2 m3 m2 m2 m2 m2 m2 m2 m1

m1 m2 m2 m2 m2 m2 m2 m2 m2 m1

m4 m5 m5 m6 m5 m5 m6 m5 m5 m6 m5 m5 m4

1 

1 

1 

1 

1 

1 

2

2

2

2

2

2

2

2

2

1 1 1 1 

1 1 1 1 

2 2 2 2 

1 

C 

B 

2 3 4 5 

A 

m3 m3

m3

m3 

m3 

D 



 306

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0.0 1.0 2.0 3.0 4.0
Time (sec)

A
cc

el
ea

ra
tio

n 
(g

)

 
Figure 6.4 Scaled Earthquake Records of Frame IIIa to 2%50 

 
 The roof displacement ( Δ r ) time history results of Frame IIIa is presented in 

Figure 6.5 as a percentage of the height of the frame ( hr ).  The maximum drift was 

observed between 5 sec to 15 sec of the ground motion records.  The Δ r demand values 

for the analyses are documented in Table 6-3 in terms of mean (μ) and 84 percentile 

(μ+σ) values.  The 84 percentile was assumed to be approximately equal to mean plus 

one standard deviation (σ) if normal distribution is assumed.  Table 6-3 shows that the 

largest maximum and minimum roof drift demands were obtained for earthquake records 

of NR94stc and NR94stn.     
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Figure 6.5 Roof Displacement Time History for Frame IIIa (2%/50) 
 
 Figure 6.6 presents the story shear (Vs ) vs. interstory drift ratio ( Δ s ) response of 

Frame IIIa for each story. Interstory drift ratio is adopted as the primary engineering 

demand parameter in the current performance-based design provisions (FEMA-350, 

2000; FEMA-356, 2000). Both Vs and Δ s  attain their maximum values at the 1st story.  

The magnitude of the demands exhibited a reduction in the upper stories.  The mean and 

84 percentile values for the maximum and minimum interstory drift ratios and shear 

forces can be found in Table 6-4.  The response of RCFT columns was studied based on 

their moment vs. axial force response as it is shown in Figure 6.7 for the exterior columns 

at the 1st, 2nd and 3rd stories (axial compression is shown as positive in the interaction 

diagram figures in this chapter).  It was found that the 1st story column reaches to the 

highest force demands and the maximum load state breaches the cross-section strength 

surface given in the AISC-LRFD (2005) design specification in the bending moment and 

axial force space.  The load state for the 2nd and 3rd story column remained well within 

the AISC-LRFD (2005) interaction surface. 

Table 6-3 The Maximum and Minimum Roof Displacement Values (Δr) of IIIa for 

2%/50 Earthquake Records 

 
Record ID Δr (max) (%) Δr (min) (%) 
IV79chi 1.184 -1.101 
LP89cap 1.116 -1.101 
LP89g04 1.088 -0.919 
LP89hda 1.322 -1.017 
NR94cen 1.178 -1.021 
NR94far 1.204 -0.996 
NR94stn 1.143 -1.243 
NR94cnp 0.985 -0.789 
NR94stc 1.414 -0.912 
NR94fle 1.271 -0.990 
SH87icc 1.061 -1.185 

μ 1.179 -1.025 
μ+ σ 1.301 -0.896 
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Figure 6.6 Interstory Drift Ratio and Shear Force Demand at 1st, 2nd and 3rd stories 

(Frame IIIa, 2%/50) 

 

Table 6-4 Maximum and Minimum Story Shear and Interstory Drift Ratios 
 

Record ID Δs (max) (%) Δs (min) (%) Vs (max) (kN) Vs (min) (kN) 
IV79chi 1.25 -1.25 3904 -3731 
LP89cap 1.19 -1.22 3739 -3802 
LP89g04 0.89 -1.11 3177 -3785 
LP89hda 1.10 -1.45 3660 -4030 
NR94cen 1.05 -1.42 3750 -4178 
NR94far 1.07 -1.24 3593 -3716 
NR94stn 1.13 -1.21 3483 -3735 
NR94cnp 0.83 -1.01 3131 -3424 
NR94stc 1.02 -1.55 3579 -4102 
NR94fle 1.12 -1.41 3827 -4001 
SH87icc 1.03 -1.17 3311 -3742 

μ 1.06 -1.28 3560 -3841 
μ+ σ 1.19 -1.11 3818 -3624 
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Figure 6.7 Axial Force and Bending Moment Interaction Demands for Edge Columns at 

1st, 2nd and 3rd Stories (Frame IIIa, 2%50) 

 
 Tort and Hajjar (2004) proposed a deformation-based ( D ) damage function 

equation to quantify the amount of damage experienced by the RCFT members as given 

in Equation 6.4.   

 D d
d
curr

o

=              [6.4] 

where: dcurr - the deflection of the structural member at the point in the loading history at            

which damage is being assessed 

do - the deflection attained when the peak load  is reached   

For the RCFT columns of Frame IIIa, the D  values were obtained utilizing the 

time-history analysis results corresponding to the ground motion records given in Table 

6.2.  While evaluating D , do was determined from the static push-over analysis of the 

structure, where the chord rotation ( R ) vs. moment response was extracted for each 

RCFT column.  The chord rotation of a column was calculated as the ratio of lateral 
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the RCFT column becomes 10% of its initial value.  The static push-over analysis of the 

structure was performed using a displacement-controlled solution algorithm (Yang and 

Kuo, 1994), where the structure is subjected to a monotonically increasing lateral 

displacement history while the factored gravity loads are sustained on the structure.  The 

distribution of the lateral loads was determined according the guidelines in FEMA-256 

(2000).  Figure 6.8 shows the base-shear (Vb ) vs. maximum inter-story drift response of 

Frame IIIa from the static push-over analysis.  In Figure 6.9, moment vs. R response 

from the static push-over analysis and time history analysis are superimposed for the 

windward interior column at the first story of the frame.  dcurr was obtained from the time 

history analysis results as the mean maximum chord rotation experienced during the 

ground motions while do  was determined from the static load deformation response 

when the stiffness reduces to a level less than 10% of its initial value.  D  was calculated 

as the ratio of dcurr  and do .  A similar methodology was also pursued for the remaining 

RCFT columns to calculate D .  The distribution of the mean D  values across all of the 

RCFT columns is illustrated in Figure 6.10.  It can be seen that mean D  values ranges 

from 0.41 to 1.04.  The value of D  the exterior columns is larger in the first story and it 

diminishes in a consistent manner toward the third story.  On the other hand, the interior 

columns experienced the largest D  value in the first and third stories.  The discrepancy 

in the damage distribution between the exterior and interior columns is attributed to the 

effect of factored gravity loads, which has more impact on the top exterior columns due 

to the reduced stiffness at the steel girder to RCFT column junction points.  Table 6-5 

documents the parameters of do  and mean dcurr  values that were used to obtain mean D  

values.  In Table 6-5, do  and dcurr were expressed in terms of chord rotation (R) of the 

RCFT columns.  
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Figure 6.8 Push-Over Response of Frame IIIa 

 
Figure 6.9 Push-Over vs. Time History Response of 1st Story Interior Column (IIIa, 

2%/50) 
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Figure 6.10 Distribution of Mean Damage Function Values for the RCFT Columns 
 

Table 6-5 Damage Function Parameters of RCFT Columns of Frame IIIa for 2%/50 

Hazard Level 
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A1-B1 1.32 2.04 0.65 
B1-C1 1.37 2.01 0.68 
C1-D1 1.01 1.90 0.53 
A2-B2 1.32 1.87 0.71 
B2-C2 1.37 2.19 0.63 
C2-D2 1.02 1.28 0.80 
A3-B3 1.32 2.41 0.55 
B3-C3 1.37 2.59 0.53 
C3-D3 1.02 1.24 0.82 
A4-B4 1.25 1.68 0.74 
B4-C4 1.34 2.57 0.52 
C4-D4 1.01 2.40 0.42 
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The local damage states of the RCFT members were found to be concentrated at 

the bottom of the 1st story columns.  For a representative ground motion record and for a 

representative RCFT column, Figure 6.11 illustrates the distribution of the limit states 

attained by the steel tube and concrete core material fibers as percentages of the total 

number of steel and concrete fibers.  It was found that the tensile strain experienced by all 

of the concrete fibers breached the strain level to initiate cracking.  50% of the concrete 

fibers underwent high compressive strain levels leading to concrete crushing.  The 

yielding limit state was found to be attained by all of the steel tube fibers.  Approximately 

6% of the steel tube fibers exhibited local buckling.   

 
Figure 6.11 Damage Distribution of RCFT Cross-Section at the Support under IV79 

Ground Motion (Frame IIIa, 2%/50) 

 
A similar methodology to the maximum considered earthquake hazard level was 

followed while selecting the earthquake records representing 10%/50 hazard level, which 

is often referred as design level earthquake.  A total number 10 ground motion records 

were selected as described in Table 6-6.  The earthquake records were scaled with respect 

to the design spectrum as shown in Figure 6.12.  The spectral acceleration at the first 

mode period ( Sa ) was determined as 0.971g producing scale factors ranging from 0.47 to 

1.38. 

 

crushing, 50 %

yielding,  
100% 

local buckling, 5.56% 

cracking, 
100% 



 314

 

Table 6-6 Earthquake Records Selected for Frame IIIa Scaled to 10%/50 Hazard Level 
 

Record 
ID Event Year Mw R (km) PGA(g) Duration 

(sec) 
Scale Factor 

IV79chi Imperial Valley 1979 6.5 28.7 0.27 40.0 0.99 

LP89cap Loma Prieta 1989 6.9 14.5 0.443 40.0 0.65 

LP89g04 Loma Prieta 1989 6.9 16.1 0.212 39.9 1.20 

LP89hda Loma Prieta 1989 6.9 25.8 0.279 39.6 0.97 

NR94cen Northridge 1994 6.7 30.9 0.322 30.0 1.22 

NR94cnp Northridge 1994 6.7 15.8 0.42 25.0 0.47 

NR94far Northridge 1994 6.7 23.9 0.273 30.0 0.98 

NR94stc Northridge 1994 6.7 13.3 0.368 30.0 1.38 

NR94stn Northridge 1994 6.7 30 0.474 31.6 1.12 

SH87icc Superstition Hills 1987 6.7 13.9 0.358 40.0 1.10 
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Figure 6.12 Scaled Earthquake Records of Frame IIIa to 10%/50 

 

 The demand imposed on Frame IIIa by the 10%/50 ground motion records given 

in  Table 6-6 is presented in Figure 6.13 as the roof displacement ( Δ r ) time history 

results as a percentage of the height of the frame ( hr ).  The Δ r demand values for the 

analyses are documented in Table 6-7 in terms of mean (μ) and 84 percentile (μ+σ) 

values.  Table 6-7 shows that the largest maximum and minimum roof drift demands in 

absolute value were obtained for the NR94stn earthquake record.  Compared to the 
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2%/50 ground motion records, smaller roof drift demands were obtained, where the ratio 

of maximum roof drift of 2%/50 hazard level to that of 10%/50 hazard level was found as 

1.60.    
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Figure 6.13 Roof Displacement Time History for Frame IIIa (10%/50) 

 

Figure 6.14 shows the story shear (Vs ) vs. interstory drift ratio ( Δ s ) response of 

Frame IIIa for each story.  Both Vs and Δ s  attain their maximum demands in absolute 

value at the 1st story.  The mean and 84 percentile values for the maximum and minimum 

interstory drift ratios and shear forces can be found in Table 6-8.  It was found that the 

displacement demands reduced more than the force demands when the hazard level was 

changed to 10%/50 to 2%/50.  The response of RCFT columns was also studied based on 

their moment vs. axial force response as it is shown in Figure 6.15 for the edge columns 

at the 1st, 2nd and 3rd stories.  It was found that 1st story column achieves to the largest 

force demands.  However, none of the columns breached the cross-section failure surface 

given in the AISC-LRFD (2005) design specification indicating the level of inelasticity to 

be insignificant. 
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Table 6-7 The Maximum and Minimum Roof Displacement Values (Δr) of IIIa for 

10%/50 Earthquake Records 

Record ID Δr (max) (%) Δr (min) (%) 
IV79chi 0.83 -0.86 
LP89cap 0.81 -0.71 
LP89g04 0.74 -0.72 
LP89hda 0.89 -0.85 
NR94cen 0.88 -0.76 
NR94cnp 0.88 -0.71 
NR94far 0.88 -0.74 
NR94stc 0.89 -0.78 
NR94stn 0.97 -0.88 
SH87icc 0.82 -0.79 

μ 0.86 -0.78 
μ+ σ 0.92 -0.72 

 

 

 
 

Figure 6.14 Interstory Drift Ratio and Shear Force Demand at 1st, 2nd and 3rd stories 

(Frame IIIa, 10%/50) 
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Table 6-8 Maximum and Minimum Story Shear and Interstory Drift Ratios (Frame IIIa, 

10%/50) 

 
Record ID Δs (max) (%) Δs (min) (%) Vs (max) (kN) Vs (min) (kN) 
IV79chi 0.87 -0.73 3133 -2847 
LP89cap 0.66 -0.79 2738 -2966 
LP89g04 0.64 -0.69 2505 -2719 
LP89hda 0.87 -0.76 3103 -3032 
NR94cen 0.76 -0.96 3079 -3482 
NR94far 0.76 -0.85 2930 -3090 
NR94stn 0.82 -0.95 3171 -3333 
NR94cnp 0.72 -0.83 2849 -3071 
NR94stc 0.71 -0.88 2751 -3161 
SH87icc 0.79 -0.77 2968 -3007 

μ 0.76 -0.82 2923 -3071 
μ+ σ 0.84 -0.73 3136 -2850 

 
 

 

 
 

Figure 6.15 Axial Force and Bending Moment Interaction Demands for the Exterior 

Columns at 1st, 2nd and 3rd Stories (Frame IIIa, 10%50) 

 The deformation-based damage function values attained by the RCFT columns 
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range from 0.33 to 0.65.  Despite the fact that the maximum deformation demands often 

occurred in the first and second story columns, the third story columns were also found to 

exhibit large damage function values.  This is due to the fact that the columns in the third 

story reach their lateral load capacity sooner than the ones in the lower stories.  

Compared to the results obtained for the 2%/50 hazard level, a clear reduction in D   

values is evident, which impacts the limit states of the RCFT columns.   

The local damage state distribution of the RCFT columns was studied by 

monitoring the stress strain response of the material fibers.  For example, Figure 6.17 

shows the limit states attained by the steel tube and concrete fibers for an RCFT cross-

section located at one of the exterior supports of Frame IIIa.  It was found that the 

damage state is not less severe than the one observed for the 2%/50 hazard level.  There 

was a clear reduction in the number of material fibers experiencing steel yielding and 

concrete crushing.  No local buckling was observed for the steel tube material fibers. 

 
Figure 6.16 Distribution of Mean Damage Function Values for the RCFT Columns 

(Frame IIIa, 10%/50) 
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Table 6-9  Damage Function Parameters of RCFT Columns for 10%/50 Hazard Level 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.17 Damage Distribution of RCFT Cross-Section at the Support under IV79 

Ground Motion (Frame IIIa, 10%/50) 

The second RCFT frame structure selected for seismic demand evaluation is 

described in Figure 6.18.  The frame dimensions and number of bays were kept as the 

same with Frame IIIa.  However, material properties and therefore the resulting member 

dcurr do 
RCFT Column mean(R (%)) Ro (%) 

D d
d
curr

o

=  

A1-B1 0.86 2.04 0.42 
B1-C1 1.01 2.01 0.50 
C1-D1 0.76 1.90 0.40 
A2-B2 0.86 1.87 0.46 
B2-C2 1.01 2.19 0.46 
C2-D2 0.75 1.28 0.59 
A3-B3 0.86 2.41 0.36 
B3-C3 1.00 2.59 0.38 
C3-D3 0.74 1.24 0.60 
A4-B4 0.76 1.68 0.45 
B4-C4 0.99 2.57 0.38 
C4-D4 0.80 2.40 0.33 
A5-B5 0.76 1.18 0.65 
B5-C5 0.99 1.77 0.56 
C5-D5 0.78 1.54 0.51 
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sizes exhibited a variation compared to Frame IIIa.  This approach allowed investigating 

the effect of different limit states and the degree of interaction between the steel tube and 

the concrete core on the global and local seismic demand of RCFT frames.  The yield 

strength of the steel tube and compressive strength of the concrete core were selected to 

be higher than the values often used in conventional designs and they were assumed to be 

552 MPa and 110 MPa, respectively.  The steel tube of the RCFT columns were designed 

as a slender cross-section with a D/t ratio of 67.  Frame IIId has the same seismic mass 

and gravity loads same with Frame IIIa.  Conducting an eigen-value analysis, the periods 

corresponding to the first three modes were obtained as 0.66 sec, 0.53 sec, and 0.22 sec.  

A 2% damping ratio was assigned and the damping proportionality factors corresponding 

to mass and stiffness were determined to be 0.286 and 0.001061, respectively.     

In order to represent the 2%/50 hazard level for Frame IIId, a total number of 11 

earthquake records were selected.  The characteristics of the selected ground motion 

records are summarized in Table 6-10.  The records were all scaled with respect to the 

Sa value at the first mode period of the structure minimizing the difference between 

design and median spectra.  The resulting scale factors ranged between 0.74 and 2.10.  

Figure 6.19 shows the comparison of the acceleration response spectra of the scaled 

ground motions with the 2%/50 hazard level acceleration response spectra available in 

the design provisions.  All the available acceleration spectra values coincide at 0.66 sec, 

which corresponds to the first mode period of the structure.  

 
Figure 6.18 Description of Frame IIId 
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Table 6-10 Earthquake Records Selected for Frame IIId Scaled to 2%/50 Hazard Level 

 

 Frame IIId was subjected to the available ground motion records and the demand 

values imposed on the structure were documented.  The maximum roof drift ( Δ r ) is often 

considered as a powerful engineering demand parameter to investigate the global 

performance of structures.  In addition, the structural design specifications often provide 

limiting values for the roof drift to satisfy the serviceability limit state.  Therefore, in 

Figure 6.20, the seismic demand was studied based on the roof drift value as a percentage 

of the height of the structure.  In Table 6-11, the roof drift response is summarized for 

each ground motion record and the mean and 84th percentile values are provided.  

Compared to Frame IIIa, the roof drift values of Frame IIId were found to be very 

similar, where the 1.7% limit was not breached for both frames.   

Record 
ID Event Year Mw R (km) PGA(g) Duration 

(sec) 
Scale Factor 

IV79chi Imperial Valley 1979 6.5 28.7 0.27 40.0 1.38 

IV79qkp Imperial Valley 1979 6.5 23.6 0.31 40.0 1.61 

LP89cap Loma Prieta 1989 6.9 14.5 0.443 40.0 0.74 

LP89hda Loma Prieta 1989 6.9 25.8 0.279 39.6 1.39 

LP89slc Loma Prieta 1989 6.9 36.3 0.19 39.6 1.91 

NR94cen Northridge 1994 6.7 30.9 0.322 30.0 1.81 

NR94cnp Northridge 1994 6.7 15.8 0.42 25.0 1.11 

NR94far Northridge 1994 6.7 23.9 0.273 30.0 1.46 

NR94fle Northridge 1994 6.7 29.5 0.240 30.0 2.10 

NR94stc Northridge 1994 6.7 13.3 0.368 30.0 1.71 

SH87icc Superstition Hills 1987 6.7 13.9 0.358 40.0 1.55 
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Figure 6.19 Scaled Earthquake Records of Frame IIId to 2%/50 
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Figure 6.20 Roof Displacement Time History for Frame IIId (2%/50) 

 

 

 

 



 323

Table 6-11 The Maximum and Minimum Roof Displacement Values (Δr) of IIId for 

2%/50 Earthquake Records 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Interstory drift ratio is adopted as the primary engineering demand parameter in 

the current performance-based design provisions (FEMA-350, 2000; FEMA-356, 2000).  

Figure 6.21 shows the interstory drift ratio vs. story shear force response of Frame IIId 

for each story.  It can be seen that the 1st story RCFT columns are subjected to the largest 

deformation demands.  The 1st story and 2nd story shear force demands were found to be 

similar.  On the other hand, the ground motion records generated the smallest 

deformation and shear force demands for the 3rd story RCFT columns.  Table 6-12 

summarizes the maximum and minimum interstory drift and shear force values across all 

stories for the available ground motion records. 

Record ID Δr (max) (%) Δr (min) (%) 

IV79chi 1.02 -1.05 
IV79qkp 1.05 -0.91 
LP89cap 0.85 -0.71 
LP89hda 1.26 -0.97 
LP89slc 1.04 -0.86 
NR94cen 1.26 -1.10 
NR94far 1.26 -0.95 
NR94cnp 1.55 -0.96 
NR94fle 1.63 -1.05 
NR94stc 1.41 -0.91 
SH87icc 1.06 -1.19 

μ 1.22 -0.97 
μ+ σ 1.46 -0.84 
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Figure 6.21 Interstory Drift Ratio and Shear Force Demand at the 1st, 2nd and 3rd stories 

(Frame IIId, 2%/50) 

Table 6-12 Maximum and Minimum Story Shear and Interstory Drift Ratios 
 

  

 

Record ID Δs (max) (%) Δs (min) (%) Vs (max) (kN) Vs (min) (kN) 
IV79chi 1.11 -0.98 3851 -3279 
IV79qkp 1.02 -0.97 3502 -3622 
LP89cap 0.77 -0.73 2901 -3220 
LP89hda 1.62 -1.30 2837 -3673 
LP89slc 0.84 -1.06 3467 -3387 
NR94cen 0.99 -1.29 3434 -3854 
NR94far 0.97 -1.68 3926 -3321 
NR94cnp 0.91 -1.41 3431 -4024 
NR94fle 0.97 -1.68 3926 -3321 
NR94stc 1.02 -1.55 3579 -4102 
SH87icc 1.03 -1.17 3311 -3742 

μ 1.02 -1.26 3470 -3595 
μ+ σ 1.24 -0.95 3834 -3283 
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The RCFT columns of Frame IIId were checked for the cross-section strength 

equations  given in AISC-LRFD (2005).  Therefore, the moment vs. axial force response 

from time history analysis results were recorded.  Figure 6.22 shows the interaction 

values attained for the exterior RCFT columns of the 1st, 2nd, and 3rd stories.  It was found 

that the interaction values remains within the cross-section failure surface given in AISC-

LRFD (2005).  This is in part due to the fact the moment and axial load capacity 

equations of RCFT beam-columns in AISC-LRFD (2005) do not account for the 

detrimental effect of local buckling.    

 
 

 
Figure 6.22 Axial Force and Bending Moment Interaction Demands for the Exterior 

Columns at 1st, 2nd and 3rd Stories (Frame IIId, 2%/50) 

 
 The deformation-based damage function by Tort and Hajjar (2003) was also 

utilized to evaluate the demand of RCFT columns.  First, static push-over analysis of 

Frame IIId was conducted producing the load-deformation response given in Figure 6.23.  

From the static push-over analysis, the chord rotation vs. shear force response of each 

RCFT column was extracted.  As shown in Figure 6.23, superimposing the time-history 
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analysis results on the static push-over curve, the parameters of do and dcurr  were 

calculated to evaluate D .  The distribution of D  across the RCFT columns is presented 

in Figure 6.25.  The D  values were found to range between 0.43 and 1.27.  For the 

majority of the RCFT column, the largest damage function values were attained in the 

first story.  Compared to Frame IIIa, D  values were found to be larger, which is 

attributed to the fact that severe local buckling taking place prior to yielding reduced the 

strength and stiffness of the RCFT columns.  In Table 6-13, the parameters to obtain D  

values of the RCFT columns can be found. 

 The degree of material inelasticity experienced by Frame IIId was examined by 

studying the distribution of local damage sates at key locations.  For example, Figure 

6.26 illustrates the local damage levels of material fibers for the RCFT cross-section 

located at one of the exterior supports in the first story for a representative ground motion 

record.  It was found out that no concrete crushing took place due to the high 

compressive strength.  The damage mainly occurred in the steel fibers in the form of 

yielding and local buckling.     

 
Figure 6.23 Static Push-Over Response of Frame IIId 
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Figure 6.24 Push-Over vs. Time History Response of 1st Story Exterior Column (Frame 

IIId, 2%/50) 

 
Figure 6.25 Distribution of Mean Damage Function Values for the RCFT Columns 
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Figure 6.26 Damage Distribution of RCFT Cross-Section at the Support under IV79 

Ground Motion 

 

Table 6-13 Damage Function Parameters of RCFT Columns of Frame IIId for 2%/50 

Hazard Level 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dcurr do 
RCFT Column mean(R (%)) Ro (%) 

D d
d
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=  

A1-B1 1.29 1.10 1.17 
B1-C1 1.31 1.03 1.27 
C1-D1 1.03 1.69 0.61 
A2-B2 1.29 1.23 1.05 
B2-C2 1.33 2.05 0.65 
C2-D2 1.01 1.59 0.64 
A3-B3 1.30 1.56 0.84 
B3-C3 1.30 2.74 0.47 
C3-D3 0.99 1.10 0.90 
A4-B4 1.09 1.72 0.63 
B4-C4 1.31 2.57 0.51 
C4-D4 1.06 2.32 0.46 
A5-B5 1.14 0.95 1.19 
B5-C5 1.32 2.55 0.52 
C5-D5 1.06 1.36 0.78 
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 The ground motion records selected to investigate the seismic demand of Frame 

IIId under 10%/50 hazard level are given in Table 6-14.  A total number of 8 ground 

motion records were selected.  The scaling of the earthquake records is presented in 

Figure 6.27, where the spectral acceleration values coincide at 0.66 sec.  The scale factors 

to match the response spectrum in the design provisions were found range from 0.74 to 

1.45 as can be noticed in Table 6-14. 

Table 6-14 Earthquake Records Selected for Frame IIId Scaled to 10%/50 Hazard Level 
 

Record 
ID Event Year Mw R (km) PGA(g) Duration 

(sec) 
Scale Factor 

IV79chi Imperial Valley 1979 6.5 28.7 0.27 40.0 0.92 

LP89cap Loma Prieta 1989 6.9 14.5 0.443 40.0 0.49 

LP89hch Loma Prieta 1989 6.9 28.2 0.247 39.1 1.45 

LP89slc Loma Prieta 1989 6.9 36.3 0.19 39.6 1.28 

NR94cen Northridge 1994 6.7 30.9 0.322 30.0 1.21 

NR94cnp Northridge 1994 6.7 15.8 0.42 25.0 0.74 

NR94far Northridge 1994 6.7 23.9 0.273 30.0 0.98 

NR94stc Northridge 1994 6.7 13.3 0.368 30.0 1.14 

SH87icc Superstition Hills 1987 6.7 13.9 0.358 40.0 1.04 
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Figure 6.27  Scaled Earthquake Records of Frame IIId to 10%/50 



 330

 The time history analysis results of Frame IIId under the ground motion records 

of Table 6-14 is documented in Figure 6.28 in terms of roof drift values as a percentage 

of the height of the structure.  The maximum drift value was found to be 1.25%, which is 

larger than the maximum drift of 0.96% obtained for Frame IIIa under 10%/50 hazard 

level.  A summary of the roof drift values for the selected ground motion records is 

provided in Table 6-15 along with the statistical properties including mean and 84th 

percentile values.     
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Figure 6.28 Roof Displacement Time History for Frame IIId (10%/50) 

 

Table 6-15 The Maximum and Minimum Roof Displacement Values (Δr) of IIId for 

10%/50 Earthquake Records 

Record ID Δr (max) (%) Δr (min) (%) 
IV79chi 0.603 -0.619 
LP89cap 0.504 -0.425 
LP89hch 0.800 -0.790 
LP89slc 0.626 -0.526 
NR94cen 0.926 -0.863 
NR94cnp 1.255 -0.898 
NR94far 0.142 -0.098 
NR94stc 0.889 -0.776 
SH87icc 0.819 -0.793 

μ 0.729 -0.643 
μ+ σ 1.041 -0.385 
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Studying the interstory drift vs. story shear response of Frame IIId, in Figure 6.29, 

it was found that the maximum deformation and force values are concentrated in the first 

and second stories.  Compared to the seismic response under 2%/50 earthquake records, 

the hysteresis response of the stories was found to be narrower, which indicates a 

reduction to occur in the inelastic deformations of the RCFT columns.  In Table 6-16, the 

deformation and forced demands of Frame IIId can be found with the corresponding 

mean and 84 percentile values. 

 

 
 

Figure 6.29 Interstory Drift Ratio and Shear Force Demand at the 1st, 2nd and 3rd stories 

(Frame IIId, 10%/50) 

 
 The moment and axial force demands of the exterior RCFT columns were 

checked against the interaction equations available in AISC-LRFD (2005).  Due to the 

use of high strength steel tube and concrete core, the nominal capacity of the RCFT 

columns were calculated to be large without any consideration given to the effect of local 

buckling..  Therefore, as can be seen in Figure 6.30, the interaction equation for the 

RCFT columns of Frame IIId remained within the interaction surface. 
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Table 6-16 Maximum and Minimum Story Shear and Interstory Drift Ratios (Frame IIId, 

10%/50) 

 
Record 

ID 
Δs (max) 

(%) 
Δs (min) 

(%) 
Vs (max) 

(kN) 
Vs (min) 

(kN) 
IV79chi 0.54 -0.52 2364 -2340 
LP89cap 0.39 -0.44 1877 -1970 
LP89hch 0.74 -0.74 3047 -2964 
LP89slc 0.52 -0.52 2288 -2382 
NR94cen 0.73 -0.92 3244 -3583 
NR94cnp 0.92 -1.14 3201 -3829 
NR94stc 0.71 -0.88 2751 -3161 
SH87icc 0.79 -0.77 2968 -3007 

μ 0.67 -0.74 2717 -2905 
μ+ σ 0.84 -0.50 3210 -2265 

 

 
 

 
Figure 6.30 Axial Force and Bending Moment Interaction Demands for the Exterior 

Columns at 1st, 2nd and 3rd Stories (Frame IIId, 10%/50) 

The deformation-based damage function values attained by the RCFT columns 

are documented in Figure 6.31 across all of the RCFT columns in Frame IIId.  The values 
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of D  were found to range from 0.32 to 0.69.  The damage of the RCFT columns was 

mainly concentrated in the 1st story.  Compared to Frame IIIa, the severity of damage was 

found to be larger for the columns of Frame IIId.  The damage function parameters of 

dcurr and do can be found in Table 6.12.   

 
Figure 6.31 Distribution of Mean Damage Function Values for the RCFT Columns 

(Frame IIId, 10%/50) 
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Table 6.12. Damage Function Parameters of RCFT Columns of Frame IIId for 10%/50 

Hazard Level 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

dcurr do 
RCFT Column mean(R (%)) Ro (%) 

D d
d
curr

o

=  

A1-B1 0.71 1.10 0.64 
B1-C1 0.93 1.03 0.91 
C1-D1 0.72 1.69 0.43 
A2-B2 0.73 1.23 0.60 
B2-C2 0.94 2.05 0.46 
C2-D2 0.70 1.59 0.44 
A3-B3 0.74 1.56 0.47 
B3-C3 0.94 2.74 0.34 
C3-D3 0.71 1.10 0.65 
A4-B4 0.66 1.72 0.38 
B4-C4 0.91 2.57 0.36 
C4-D4 0.75 2.32 0.32 
A5-B5 0.66 0.95 0.69 
B5-C5 0.90 2.55 0.35 
C5-D5 0.71 1.36 0.53 
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Chapter 7 
 

7. Reliability Framework 
 
7.1. Introduction 
 

 The primary advantage of performance-based design over prescriptive design 

methodologies is that the inherent uncertainty and randomness in seismic demand and 

capacity evaluations of structures can be accounted for.  This is often realized by 

quantifying the confidence levels for the targeted performance objective indicating the 

likelihood of producing an acceptable design (FEMA-350, 2000).   

Cornell et al. (2002) have proposed that the effects of uncertainty and randomness 

can be incorporated into a performance-based design approach similar to the 

conventional load and resistance factor format as given in Equation 7.1.    

φ γC D≥              [7.1] 

where: 

 C - median capacity value (e.g., local response parameters from the experiments, 

global response parameters from nonlinear time history)  

D - median demand value under a given ground motion of intensity (e.g., local 

and global damage parameters from structural analysis) 

φ − capacity factor 

γ − demand factor 

 The process to arrive at Equation 7.1 requires the identification of the 

probabilistic representations of the main components operating within the performance-

based design.  These components include ground motion hazard, seismic demand (D), 

and seismic capacity (C) (Cornell et al., 2002).  First, ground motion hazard and seismic 

demand are combined to derive the annual probability of having seismic demand greater 

than a threshold value of d for a given hazard level with an intensity of x.  The resulting 

annual probability expression as a function of d is often termed as drift hazard curve 
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( HD ) as given in Equation 7.2.  In displacement-based design methods, demand is often 

considered as a structural deformation parameter (e.g., maximum interstory drift).  On the 

other hand, the main parameter characterizing the ground motion is often assumed as the 

spectral acceleration at the first mode period of the structure ( Sa ).  Equation 7.2 employs 

the total probability theorem so that all ranges of ground motion intensities are covered 

while assessing the probabilistic seismic demand.  This approach is considered as one of 

the superiorities of performance-based design over prescriptive design methodologies, 

where the demand evaluations are performed for a single seismic hazard level (e.g., 

10%/50, 2%/50) (Yun et al., 2002). 

H d P D d S x dH xD a( ) [ | ]| ( )|= ≥ =∫           [7.2] 

where: P – operator to denote probability 

d H x( ( )) - the expression resulting from differentiation of seismic hazard curve 

(H) with respect to Sa and evaluating the differentiated seismic hazard curve at 

S xa = once it is multiplied by dSa   

The seismic hazard curve that is introduced in Equation 7.2 quantifies the annual 

probability of having a ground motion hazard with intensity greater than a threshold 

value of sa .  The seismic hazard curve often has the format given in Equation 7.3 and it is 

provided by the seismologist for the desired geographical region. 

H s P S s k sa a a o a
k( ) [ ]= ≥ = × −           [7.3] 

where: k, ko  coefficients resulting from linear regression hazard on intensity 

 The probabilistic representations of drift and ground motion hazard given in 

Equation 7.2 and 7.3 are combined together to arrive at the numerical expression of the 

probability of seismic capacity to be less than a threshold value of seismic demand (d).  

The value of this expression indicates the success of the targeted design objective as it is 

described in Equation 7.4. 

 P P C d dH dPL D= ≤∫ [ ] ( )            [7.4] 

where:  PPL annual probability of having an unsatisfactory design objective 
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 To quantify the uncertainty and randomness of the designed structure within a 

probabilistic design methodology, the integral expression in Equation 7.4 needs to be 

evaluated.  This can be performed with ease through introducing simplifying relations 

and probability distributions among ground motion hazard, seismic demand, and 

capacity. 

 Based on time history analysis results on representative 3 story structures, Luco 

and Cornell (1998) correlated the median drift D  to Sa in the following format. 

  ( )D a Sa
b=              [7.5] 

where: a b, - correlation coefficients (b = 1, Luco and Cornell, 1998) 

The coefficient a in Equation 7.5 can be obtained by conducting a series of nonlinear 

analysis and performing a linear regression of D  on Sa . 

 Assuming the drift demands to be log-normally distributed around its mean value 

with a standard deviation of βD Sa/ , the first term in the integral expression of Equation 7.2 

can be obtained as follows: 

 P D d S x d ax
a

b

[ | ] ( ln( ) ln( ) )≥ = = −
−1 Φ

βD/ Sa

         [7.6] 

where: Φ  is the standardized Gaussian distribution function 

 Φ( )s
s

=
−∞

−

∫
1

2π
e ds

(1/ 2)s2

 

Substituting Equation 7.6 and 7.5 into Equation 7.2 and performing integration by parts, 

the drift hazard curve can be derived as follows (Jalayer, 2003). 

 H d H s k
bD a

d
D Sa

( ) ( ) exp /= ×
⎡

⎣
⎢

⎤

⎦
⎥

1
2

2

2
2β           [7.7] 

where: s d aa
d b= ( / ) /1 (inverse function of Equation 7.5 (Jalayer, 2003)) 

Similarly, seismic capacity is also assumed to be log-normally distributed around its 

mean value ( C ) with a standard deviation of βc .  Therefore, the first term of Equation 7.4 

becomes: 

 P C d d C

C

[ ] ( ln( ) ln( ) )≤ =
−

Φ
β

          [7.8] 
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Substituting Equation 7.8 and 7.5 into Equation 7.4 and carrying out integration by parts 

PPL becomes: 

 P H s k
bPL a

C
D S Ca

= × +
⎡

⎣
⎢

⎤

⎦
⎥( ) exp ( )/

1
2

2

2
2 2β β          [7.9] 

where:  s C aa
C b= ( / ) /1     

 In reliability-based performance-based design methodologies, the performance 

objective is stated as satisfying a performance level (e.g., Immediate Occupancy) under a 

seismic hazard level expressed in terms of its probability of exceedence in a specific 

amount time ( Po ) (e.g., 2%50, 10%50).  The minimum capacity to meet the targeted 

performance objective (CPo) can be determined utilizing the graphics adopted from Luco 

and Cornell (1998).  First, spectral acceleration value corresponding to Po  ( Sa
Po ) is 

determined from the hazard curve.  Then, substituting Sa
Po  into Equation 7.5, the seismic 

demand (DPo) imposed on the designed structure is obtained.  The capacity (CPo) should 

be larger than the calculated demand to satisfy the performance objective.  Similarly, 

Figure 7.1 can also be utilized in the reverse direction such that for a given capacity 

(CPL), the probability of the ground motion hazard level (PPL) that will generate a seismic 

demand (DPL) equal to CPL can be obtained.  As can be seen From Figure 7.1, these 

relations between hazard level, seismic demand, and seismic capacity produce the 

Equation 7.10 to check the adequacy of a design for the intended performance objective. 

   P PPL o<          [7.10]  

Substituting Equation 7.9 and 7.3 into Equation 7.10: 

 P H s k
b

P k SPL a
C

D S C o o a
P k

a

o= × +
⎡

⎣
⎢

⎤

⎦
⎥ ≤ =

−( ) exp ( )/
1
2

2

2
2 2β β    [7.11] 

where: s C aa
C b= ( / ) /1 , s D aa

P Po bo = ( / ) /1  

Expanding and rearranging Equation 7.11, the performance equation that was previously 

introduced in Equation 7.1 can be obtained as follows: 

 e e
k
b

k
bC−⎡

⎣⎢
⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥× ≥ ×

1
2

1
2

2 2β β
C D

D|Sa Po       [7.12] 

where:  φ
β

=
−⎡

⎣⎢
⎤
⎦⎥e

k
b C

1
2

2

, γ
β

=
⎡
⎣⎢

⎤
⎦⎥e

k
b

1
2

2
D|Sa  
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Figure 7.1 Graphical Representation of Relation Between Hazard Curve, Seismic 

Demand and Capacity Adopted From Luco and Cornell (1998) 

 
7.2. Treatment of Uncertainty and Randomness  
 
     There exist two types of uncertainties to be accounted for while quantifying the 

components of performance-based design.  In Equation 7.12, the factors of φ and γ 

captures the dispersion in seismic demand and capacity calculations due to the record to 

record variations, which is also known as aleatoric uncertainty.  On the other hand, the 

second type of uncertainty to be taken into account is due to the limitations in the 

accuracy of scientific methods while implementing the performance-based design 

methodologies.  This type of uncertainty is often termed as epistemic uncertainty and it is 

included in the performance equation as given below (Jalayer, 2003). 

 
( ) ( )

e e
k
b

k
bRC UC RD− +⎡

⎣⎢
⎤
⎦⎥

+⎡
⎣⎢

⎤
⎦⎥× ≥ ×

1
2

1
2

2 2 2 2β β β β
C D

UD Po      [7.13] 

where:  β βRC C=  dispersion in seismic capacity due to randomness 

 βUC  dispersion in seismic capacity due to uncertainty 
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 β βRD D Sa
= / dispersion in seismic demand due to randomness 

 βUD  dispersion in seismic demand due to uncertainty  

  In order to implement the aforementioned methodology in this research, the 

dispersion factors due to randomness and uncertainty need to be calculated for RCFT 

members and frames.   

7.2.1. Uncertainty of Capacity at the Local Level 
 
 Tort and Hajjar (2004) proposed deformation-based damage function equations to 

calculate the available capacity with respect to various limit states.  These equations were 

determined based on experimental tests available in the literature under static loading 

schemes.  Equations 7.14, 7.15, 7.16, and 7.17 represents the capacity of RCFT beam-

columns against yielding in compression ( Dcy ), yielding in tension ( Dty ), local buckling 

of the flange ( Dlbf ), and local buckling of the web ( Dlbw ), respectively.  The equations 

are valid for beam-column specimens having constant axial load and shear force putting 

the member into double curvature, which are common in moment frame structures. 

 . . .D
d
d

P
P

P
Pcy

cy

o o

s

o

= = − − +160 2 47 2 64        [7.14]  

. . .D
d
d

P
P

P
Pty

ty

o o

s

o

= = − +147 528 385         [7.15] 

 . . .D
d
d

P
P

P
Plbf

lbf

o o

s

o

= = − − +368 311 397        [7.16] 

 . . .D d
d

P
P

P
Plbw

lbw

o o

s

o

= = − − +4 81 10 49 1081       [7.17] 

where: do - deformation at the point of peak load, dty - deformation at initiation of tension 

flange yielding, dcy - deformation at initiation of compression flange yielding, dlbf - 

deformation at initiation of local buckling of the compression flange, dlbw - deformation 

at initiation of local buckling of the web, P - axial load acting on the member, Ps - axial 

load capacity of the steel tube, Po - axial load capacity of the RCFT cross-section 
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The epistemic uncertainties in the capacity equations presented above were 

assumed to be generated from variations in concrete strength (δ fc ), yield stress of the 

steel tube (δ fy ), and the dispersion due to the scatter in the experimental data points that 

were used to derive the capacity equations (δsc ).  The depth, thickness, and axial load on 

the specimens were all assumed to be deterministic quantities.  The rest of uncertainties 

were assumed to be negligible such as fabrication errors, professional factor etc.   

The variation in the concrete strength from its nominal values is examined based 

on experimental test data from the literature.  Figure 7.2 shows the comparison of the 

measured concrete strength ( f cm
' ) and nominal concrete strength ( f co

' ) for the RCFT 

beam-column tests conducted by Inai et al. (2004) and Varma (2000).  The coefficient of 

variation is defined as the normalized parameter that indicates how widely the values of 

the variety are spread from each other (Ang and Tang, 1975).  Therefore, δ fc was 

calculated as given in Equation 7.18 utilizing the data points of Figure 7.2 and it was 

evaluated as 0.036. 

( ) ( )
( )

δ fc =

−

=
∑

f' f'

f'
N

cm i co i

co ii 1

N

                    [7.18] 

where: N – number of data points 
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Figure 7.2 Variation of Compressive Strength of Concrete 
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Similarly, the variation of yield strength of the steel tube was also investigated 

utilizing the experimental data values reported in the literature.  In Figure 7.3, the 

comparison of nominal ( f yo ) and measured ( f ym ) values of the yield strength of the steel 

tube is presented for the specimens tested by Tomii and Sakino (1979), Lu and Kennedy 

(1994), and Varma (2000).  The data values were selected such that the calculated 

coefficient of variation will be valid for a wide of yield strengths.  Evaluating Equation 

7.19, δ fy  was determined as 0.193. 

( ) ( )
( )

δ fy =

−

=
∑

f f

f'

N

ym i yo i

yo i
i 1

N

                    [7.19] 
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Figure 7.3 Variation of Yield Strength of the Steel Tube 

 

The variation of the deformation-based damage function values due to scatter in 

the experimental data was studied separately for each limit state.  The difference between 

nominal ( Do ) and measured ( Dm ) damage function values was normalized by the 

nominal value to obtain the coefficient of variation  Therefore,δsc can be calculated as it 

is described in Equation 7.20.   



 343

   

( ) ( )
( )

δrc

i

=

−

=
∑

D D

D

N

o i m

o i
i 1

N

          [7.20] 

Figure 7.4 through Figure 7.7 shows the comparison of Do  and Dm for compression 

flange yielding, tension flange yielding, local buckling of the compression flange, and 

local buckling of the web, respectively.  Table 7-1 summarizes the corresponding 

δsc values for each limit state.  From the results in Table 7-1, the limit state of local 

buckling of the compression flange has the largest δsc  due to the large scatter in the data 

values. 

 

Figure 7.4 Variation of Dcy  due to Scatter in the Experimental Data 
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Figure 7.5 Variation of Dty  due to Scatter in the Experimental Data 

 

Figure 7.6 Variation of Dlbf  due to Scatter in the Experimental Data 
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Figure 7.7 Variation of Dlbw  due to Scatter in the Experimental Data 
 

Table 7-1 Summary of δsc for the Limit States of RCFT Beam-Columns 
 

Limit 

States 

Yielding of 

Compression 

Flange 

Yielding of 

Tension Flange 

Local Buckling 

of Compression 

Flange 

Local 

Buckling of 

Web 

δrc  0.53 0.24 0.76 0.29 

δ fc  0.036 0.036 0.036 0.036 

δ fy  0.193 0.193 0.193 0.193 

 

The probabilistic representation of capacity given in Equation 7.8 was derived 

assuming a log-normal distribution.  Therefore, the coefficients of variations in the 

normal space (δ ) can be expressed in terms of standard deviations in the log-normal 

space ( β ) using the conversion function given below (Nowak and Collins, 2000). 

 β δ2 2 1= +ln( )         [7.21] 
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Introducing the conversion stated Equation 7.21, the values in Table 7-1 become as 

follows: 

Table 7-2 Summary of βsc for the Limit States of RCFT Beam-Columns 
 

Limit 

States 

Yielding of 

Compression 

Flange 

Yielding of 

Tension Flange 

Local Buckling 

of Compression 

Flange 

Local 

Buckling of 

Web 

βrc  0.50 0.237 0.675 0.284 

β fc  0.036 0.036 0.036 0.036 

β fy  0.191 0.191 0.191 0.191 

 

The standard deviations of the natural logs of capacities of RCFT members can be 

combined as follows to obtain βUC introduced in Equation 7.13.  Table 7-3 summarizes 

the βUC  values for each limit states 

β β β βUC rc
2 = + +2 2 2

fc fy        [7.22] 

 

Table 7-3 Summary of βUC for the Limit States of RCFT Beam-Columns 
 

Limit 

States 

Yielding of 

Compression 

Flange 

Yielding of 

Tension Flange 

Local Buckling 

of Compression 

Flange 

Local 

Buckling of 

Web 

βUC  0.536 0.307 0.702 0.344 

 

7.2.2. Randomness of Capacity at the Local Level 
 
 The randomness at the local level accounts for the variation in the capacity of 

RCFT members due to record to record variability.  To the authors’ knowledge, 

experimental tests on individual RCFT members subjected a series ground motion 

records or quasi-static loading protocols are not common.  Therefore, the standard 

deviation of the natural logs of the local capacities due to randomness ( βRC ) will be 
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assumed as 0.20 as it is suggested in FEMA-350 (2000) for steel moment frame 

structures.  

7.2.3. Uncertainty of Capacity at the Global Level 
 
 The uncertainty in evaluating the global capacity of structures is governed by the 

employed analysis methods.  The assumptions, material models, and solution schemes 

utilized to obtain the seismic capacity determines the magnitude of uncertainty.  In 

FEMA-350 (2000), the standard deviation of the natural load global capacity due to 

limitations in the scientific method and information ( βUC ) is assumed as follows: 

 β βUC NTH= 3           [7.23] 

where: βNTH  - the uncertainty in nonlinear time history analysis  to represent the actual  

behavior ( βNTH  = 0.15 for 3-story structures) 

7.2.4. Randomness of Capacity at the Global Level 
 

 Randomness in capacity at the global level is determined based on dynamic push-

over studies documented in FEMA-350 (2000), where global capacity and its dispersion 

due to randomness ( βRC ) are provided for 3 story steel moment frame structures.  The 

same capacity and dispersion values are adopted in this research study for RCFT frames, 

where the global capacity is assumed as an interstory drift ratio of 0.1 and βRC  is 

assumed as 0.07. 

7.2.5. Uncertainty and Randomness of Demand  
 
 Two types of uncertainties that are assumed to be significant will be considered in 

demand evaluation.  The first one is the ability of nonlinear time history analysis to 

simulate the actual behavior.  The measure of dispersion for the accuracy of nonlinear 

time history analysis ( NTHβ ) will be the same at the local and global level.  NTHβ is 0.15 

for 3 story structures from Yun et al. (2002).  The second type of uncertainty is called as 

the bias factor, which accounts for the accuracy of analysis procedure.  The measure of 
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dispersion for the bias factor ( BFβ ) is calculated for various analysis methods such as 

monotonic linear elastic analysis, monotonic second-order inelastic (push-over) analysis, 

and linear dynamic time history analysis.  The bias factors given in FEMA-350 will also 

be used in this research for RCFT structures. BFβ  and NTHβ  will be combined to calculate 

βUD as given in Equation 7.24. βUD  is assumed to be the same at the local and global 

level.         

 β β βUD BF NTH
2 2 2= +         [7.24] 

The randomness in demand evaluations is calculated based on nonlinear time 

history analysis results.  The standard deviation of the natural log of the maximum 

interstory drift ratios from nonlinear time history analysis ( βRD ) represents the measure 

of dispersion in the demand evaluations due to record-record variations. βRD  is assumed 

to be the same both at the global and local level. 

The seismic demand evaluation results of Frame IIIa and Frame IIId that were 

presented in Chapter 6 were utilized to obtain βRD  of RCFT structures.  The variance of 

the maximum interstory drift ratios is determined for both frames at 10%50 and 2%50 

hazard levels.  Then, the variance is converted into standard deviation in the log-normal 

space to arrive at βRD .  Table 7-4 summarizes βRD values obtained for Frame IIIa and 

Frame IIId. 

Table 7-4  Summary of βRD for 3-story RCFT Frame Structures 
 

 

 

 

 

7.3. Capacity Factors 
 
 Obtaining the measure of dispersions for the local and global capacity of the 

structural members, the capacity factor can be calculated using the expression given 

below, which was previously introduced in Equations 7.12 and 7.13. 

Hazar Level 2%50 10%50 

IIIa 0.13 0.09 

IIId 0.23 0.31 
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The factor k  in Equation 7.25 represents the slope of the hazard curve and it is assumed 

3 for California.  The b  factor is taken as equal 1 following the recommendation by Luco 

and Cornell (1998). 

 Substituting the βRC and βUC  values of the RCFT members, the capacity factors at 

the local level can be quantified as given in Table 7-5. 

Table 7-5 Summary of Capacity Factors for RCFT Members 
 

Limit 

States 

Yielding of 

Compression 

Flange 

Yielding of 

Tension Flange 

Local Buckling 

of Compression 

Flange 

Local 

Buckling of 

Web 

βUC  0.536 0.307 0.702 0.344 

βRC  0.2 0.2 0.2 0.2 

φ 0.61 0.82 0.45 0.79 
  

The capacity factor for global response of 3 story structures can be calculated by 

substituting βUC = 0 26. and βRC = 0 07.  into Equation 7.25 and φ factor is obtained  as 

0.897. 

 

7.4. Demand Factors 
 
 The demand factor introduced in Equations 7.12 and 7.13 is assumed to consist of 

two parts including γ  and γ α as shown in Equation 7.26.   

 
( )

γ
β β

= = ×
+⎡

⎣⎢
⎤
⎦⎥e

k
b RD

1
2

2 2
UD

γ γ α        [7.26] 

γ  is termed as the demand uncertainty factor accounting for uncertainties emanating 

from structural response and ground motion characteristics.  On the other hand, 

γ α quantifies the bias and uncertainty introduced by using a specific analysis procedure. 

γ  and γ α can be calculated as follows from Equation 7.26. 
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The demand factor for RCFT structures is calculated by substituting βRD values into 

Equation 7.27 as detailed in Table 7-6. 

 

Table 7-6 Summary of γ  values for 3-story RCFT Frame Structures 
 

Hazard Level 2%50 10%50 

IIIa 1.03 1.01 

IIId 1.08 1.15 

 

The calculation γ α is performed using Equation 7.28.  However, its value is dependent on 

the analysis method to be used identified through bias factors provided in FEMA-350 

(2000). 
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7.5. Confidence Level 
 
 The reliability framework employed in the current performance-based design 

provisions involves calculation of a confidence parameter that permits quantifying the 

confidence level to achieve a specific performance objective.  The confidence parameter 

( λcon ) has the form given in Equation 7.29 as the ratio of factored demand to the factored 

capacity. 

  λ γ
φcon

PD
C

o

=            [7.29] 

7.6. Intended Performance Based-Design Methodology 
 

The design process starts by selecting the targeted performance level and the 

corresponding hazard level.  Based on the selected performance level (e.g., Immediate 

Occupancy, Collapse Prevention), the capacity at the local level is calculated in terms of 

deformation-based ( )
^

capacityD  or energy-based ( capacityE
^

) damage indices using the 
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empirical formulations proposed by Tort and Hajjar (2003a, b).  Note that, in this chapter 

of the report, the resistance factor calculations are illustrated only for deformation-based 

damage functions.  However, the same procedure described in Section 7.1.1 can be 

utilized to arrive at resistance factors for energy-based damage functions.  The damage 

index values at the local level are compared to their limiting values reported for different 

performance levels by Tort and Hajjar (2003a, b).  This comparison helps to identify the 

local damage states to be checked for the targeted performance level.  The global 

capacity (C) corresponding to the targeted performance level is obtained from 

recommended value based on incremental dynamic analysis.  In the second stage, load 

deflection curves of the RCFT members to be designed are constructed using the 

available finite element methods.  For example Figure 7.8 shows the lateral displacement 

vs. shear force response of an RCFT column obtained from nonlinear static push over 

analysis of the whole structure that the RCFT column serves as a structural member. 

 
Figure 7.8 Load Deformation Response of the RCFT Column to Calculate Damage 

Function Values 
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The next stage of the design process involves the analysis of the whole structure 

for the selected hazard level using the available analysis methods such as equivalent 

static load, static push-over analysis, or nonlinear time history analysis.  The maximum or 

mean deformation values for the RCFT members are obtained from the analysis results.  

Using the maximum or mean deformation values, the current states of the members are 

located on their load deflection curves from the previous stage.  For example , Figure 7.9 

shows the mean deformation level of an RCFT column obtained from nonlinear time 

history analysis for a set of earthquake records.  The time history analysis results are 

superimposed on the static push-over response to evaluate the damage function values 

imposed on the column.  Following the calculation of the energy-based ( )
^

demandD  and 

deformation-based ( demandE
^

) damage function values, they are checked against the 

limiting values of the local damage states (concrete cracking, concrete crushing, steel 

yielding etc.) so that the achieved local performance level is decided.  The global demand 

(D) of the structure is also determined from the analysis results.  At the final stage, the 

quantified values of demand and capacity of the RCFT structure are adjusted for 

uncertainty and randomness both at the local and global level.  The design is assumed to 

be successful if the factored values of demand are greater than the factored values of 

capacity and satisfies the targeted confidence level. 
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Figure 7.9 Calculation of Damage Function Values Imposed on a RCFT Column Based 

on Nonlinear Time History Analysis 
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Chapter 8 
 

8. Conclusion  
 

 A computational study was conducted to develop an efficient and accurate 

analysis method that will allows investigation of the seismic response of three-

dimensional steel and concrete composite structures with rectangular concrete-filled steel 

tube (RCFT) beam-columns and steel girders.  The analysis method was tailored with 

comprehensive numerical algorithms and material formulations to account for the salient 

features of RCFT columns.  Following the calibration and verification of the 

computational model against a large set of experimental and anlaytical results from the 

literature, the formulation was used for examining the seismic performance of 

representative RCFT frame structures.  A reliability-based performance-based design 

methodology was then proposed for quantifying seismic performance of composite RCFT 

frames in the form of multiple structural demand and capacity parameters and also 

evaluating the inherent uncertainties and randomness in the seismic response 

assessments.   

 A distributed plasticity mixed finite element methodology was employed for the 

derivation the three-dimensional RCFT beam-column finite element.  A total number of 

18 degrees-of-freedom (DOFs) were defined so that the differential axial deformations 

between the steel tube and the concrete core can be accounted for.  For each node of the 

beam-column finite element, an additional 3 DOFs were introduced to define the 

translational deformations of the steel tube and the concrete core independently. The 

numbering of the DOFs was performed in such a way that automatic assembly may be 

done without additional computational effort when an 18-DOF RCFT beam-column is 

framed by 12 DOF steel girders.  Among the translational DOFs, the shear translations of 

the steel tube and the concrete core were constrained to be equal to each other via 

geometrically nonlinear penalty functions.  Therefore, the differential displacement 

between the two media can only occur in the axial (longitudinal) direction of the element, 
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which is governed by the bond-slip characteristics of the interface.  The rotational DOFs 

were defined commonly due to the inherent compatibility between the steel tube and the 

concrete core since the concrete core placed inside the steel tube.  Therefore, the first set 

of 3 DOFs were assumed to be steel translations, the second set of 3 DOFs were assumed 

to be steel and concrete rotations, and the final 3 DOFs were reserved for concrete core 

translations.  The stiffness and element internal forces were derived in the corotational 

reference of frame, where rigid body modes of deformations were excluded in the 

derivations.  The statement of equilibrium was expressed based on the principle of virtual 

displacements as a balance between the internal and external work done.  Since the slip 

deformation at the interface requires an energy input, the statement of equilibrium was 

augmented with an extra term to account for the energy accumulation at the interface.  In 

the addition, the rest of the energy terms in the equilibrium equation were defined 

separately for the steel tube and concrete core.  Cubic-Hermitian and quadratic 

interpolation functions were introduced for the transverse and axial deformation fields, 

respectively.  The Green-Lagrange strain measure was adopted to define the axial strains 

along the element length.  The curvatures were assumed to be the second-order derivative 

of the transverse deformation fields exploiting the plane sections remain plane 

assumption. The kinematic expression of the slip deformation was defined as the 

difference between the axial deformations at the two nodes of the RCFT beam-column 

element.  Employing a distributed plasticity mixed finite element formulation, the 

element internal forces were also treated as unknown variables in addition to the nodal 

deformations.  Therefore, two new equations of element compatibility and cross-section 

equilibrium were introduced to be solved in addition to the element equilibrium.  The 

compatibility equation expressed the balance between the deformations obtained from 

interpolated displacements and those obtained from interpolated forces.  The force 

interpolation was achieved by introducing linear shape functions for both bending 

moment and axial forces.  Consistent with the element deformations, the element forces 

were defined separately for the steel tube and the concrete core.  The cross-section 

equilibrium defined the balance between interpolated forces and the forces obtained 

directly from constitutive relations.  In order to trace the load-deformation response of an 
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RCFT beam-column element under externally applied loads, the element equilibrium, 

compatibility, and cross-section equilibrium are required to be solved simultaneously.  

However, due to their nonlinear nature, these equations are needed to be solved 

incrementally.  Therefore, they were linearized with respect to their state variables to 

arrive at the expressions for element stiffness and internal forces.  The calculation of the 

element internal forces is often considered to be the critical stage of a nonlinear finite 

element solution algorithm and it was outlined in detailed for the current formulation.  

The internal force determination starts by solving for the incremental displacements in 

the corrotational frame.  Utilizing the displacement shape functions and kinematic 

relations, the axial strain and curvatures were obtained along the element length.  Then, 

the compatibility equation was evaluated and it is multiplied by the element flexibility to 

obtain the nodal forces.  Interpolating the nodal forces, the cross-section forces along the 

element length were determined.  The cross-section forces were converted into cross-

section deformations in the form of axial strains and curvatures and a new set of cross-

section forces are calculated based on material constitutive relations.  Then, the cross-

section equilibrium and compatibility equation were then evaluated subsequently to 

determine their residuals.  In the current formulation, those residual were transferred to 

the residual of the element equilibrium to be solved through global Newton-Raphson 

iterations.  In order to have a finite element formulation to analyze full composite frames, 

a similar distributed plasticity mixed finite element formulation was also developed for 

an 12 DOF beam-column element to simulate steel girders or braces framing into RCFT 

columns.  

 Investigating the inelastic response of RCFT frames requires developing 

comprehensive material constitutive relations for the concrete core and the steel tube.  

The constitutive model of the concrete core was developed to simulate the uniaxial stress- 

strain response under both cyclic and monotonic loading schemes.  Both the compressive 

response and the tensile response were considered in detail.  Based on the uniaxial 

compression tests in the literature on stocky RCFT columns, it was assumed that the 

concrete core behaves as plain concrete until the attainment of the peak compressive 

stress, where it is described by an ascending type nonlinear curve.  The confinement 
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effect provided by the steel tube becomes effective following the breachment of the peak 

compressive stress and it manifests itself by ensuring a mild linear strength degradation 

response after peak compressive stress. No strength enhancement due to confinement was 

considered consistent with experimental results.  The concrete core was assumed to retain 

a constant stress level at large compressive strain ranges.  The monotonic tensile response 

was assumed to be the same as plain concrete, where a sudden stress drop that 

asymptotically reaching to zero was assumed once the tensile strength is breached.  The 

monotonic tensile response and the compressive response until the peak stress were 

adopted from the existing models in the literature (Chang and Mander, 1994; Tsai, 1988).  

In this research, empirical equations were derived to define the slope of the linear 

strength degradation region and also to define the magnitude of the constant stress 

maintained at high compressive strains. The data points to develop these equations were 

obtained from the experiments in the literature, where concrete core was instrumented.  It 

was found that the slope of the strength degradation response is correlated with the 

strength concrete and slenderness of the steel tube as a function of its depth, thickness, 

and yield stress.  The strength degradation becomes more severe if the strength of 

concrete is high.  In addition, the concrete core of RCFT beam-columns with slender steel 

tubes experiences a larger rate of strength degradation.  The same parameters were also 

used to derive the equations for the residual compressive stress.  The specimens having 

high strength concrete and slender steel tubes were found to exhibit lower constant stress 

levels.  The equations were calibrated so that they are valid for RCFT beam-columns 

having a wide range of material and geometric properties. The cyclic rules of the concrete 

model were adopted from Chang and Mander (1994) as polynomial expressions defining 

the unloading and reloading type response.  Partial unloading and reloading type 

behavior, stress reversal between tension and compression were modeled.  In order to 

increase the comprehensiveness of the formulation under random strain histories, new 

rules were defined and implemented.  The accuracy of the model was tested against 

multiple cyclic loading tests conducted on confined and unconfined concrete specimens.   

The constitutive relation of the steel tube was described using the uniaxial 

bounding surface model proposed by Mizuno et al. (1991).  The model had the capability 
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to trace stress-strain response under both monotonic and cyclic loadings.  The inelasticity 

was simulated based on the evolution of the bounding and loading surfaces.  The 

bounding surface defined the limiting stress state that the material can attain.  The 

boundary between elastic and inelastic response was described by the loading surface.  

Inelasticity was assumed to initiate once the stress state reaches the loading surface.  It is 

the distance between the bounding and loading surfaces indicating the degree of plasticity 

that the material was subjected to.  The model had the features of accounting for several 

key phenomena typical for steel material including hardening, Baushinger-effect, 

reduction of elastic response etc.  The focus of this research is on RCFT beam-columns 

with cold-formed steel tube, which exhibit different characteristics from those with hot-

rolled steel tube.  The model by Mizuno et al. (1991) was modified so that the residual 

stress patterns generated due to cold-forming process can be captured.  This was achieved 

by calibrating an initial plastic strain level from the coupon tests in the literature.  In 

addition, the flat plateau response of hot-rolled steel following yielding was not 

implemented since cold-formed steel often exhibits a gradual yielding response.  The 

cold-forming process results in variation of yielding stress around the perimeter of the 

steel tube.  Therefore, different yield stress values were calibrated for the flat and corner 

regions based on the coupon tests available in the literature.  Under large compressive 

strains, slender steel tubes experience local buckling type behavior leading to a strength 

degradation type response.  In this research, the steel model by Mizuno et al. (1991) was 

augmented so that the local buckling phenomena can be accounted for.  It was assumed 

that a linear strength degradation region initiates once the strain level of local buckling is 

reached and this softening type of response continues until a constant stress region is 

attained.  Equations were derived to define the strength degradation response and the 

constant stress region based on axially-loaded stocky RCFT columns available in the 

literature.  It was found that as the slenderness of the steel tube gets larger (e.g., small 

thickness, high yield stress), it becomes more susceptible to local buckling and 

experiences earlier local buckling with more severe strength degradation with smaller 

residual stress values.  Examining the experiments on RCFT beam-columns under cyclic 

loading schemes, it was found that local buckling generates a reduction in strength even 
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if the amplitude of plastic strain remains approximately the same.  This type of 

behavioral pattern was introduced into the steel model by calibrating an equation as a 

function of the plastic work causing a reduction in the radius of the bounding surface.  

Therefore, the hardening type response typically observed in the absence of local 

buckling turns into a softening type response once local buckling initiates.  The model 

proposed by Mizuno et al. (1991) was also used in this research to simulate the stress-

strain response of steel girders.  The local buckling feature typically observed for non-

compact steel girder cross-sections was added to the existing model.  Examining the 

literature for monotonic and cyclic tests conducted on steel girders, equations were 

derived to define the strength degradation and constant stress regions.  In addition, the 

reduction of the bounding surface as function of the accumulated plastic work was 

described through equations calibrated with respect to cyclic tests.   

The bond-slip response of the interface between the steel tube and the concrete 

core was assumed to exhibit a bilinear type response, where a linear elastic region until 

the attainment of peak bond stress is followed with a linear post-peak region having an 

approximately zero stiffness.  The push-out tests on RCFT columns available in the 

literature indicated that the aforementioned constitutive relation is a realistic 

representation of the cyclic bond-slip response.       

The performance of the distributed plasticity mixed finite element formulation 

along with the constitutive relations was assessed by analyzing RCFT specimens tested in 

the literature and then conducting comparisons between computational and experimental 

results.  This was performed for specimens under different boundary conditions and 

loading schemes.  The verification studies were carried out under three main headings 

including geometrically nonlinear elastic problems, slip-critical materially and 

geometrically nonlinear problems, and materially and geometrically nonlinear problems.  

In the geometrically nonlinear elastic problems, the ability of the mixed finite element 

formulation was checked to predict the buckling load and the load deformation response 

under the existence P-Δ and P-δ type geometric nonlinearities.  Several numerical 

algorithms were employed.  The buckling load was decided based on the sign of the 

minimum eigen value.  The problems exhibiting softening type or snap back response 
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were analyzed utilizing constant displacement arc length, and generalized displacement 

arc length methods (Yang and Kuo, 1994).  The mixed finite element formulation 

produced excellent correlations with the analytical results for a wide range of problems 

with the use of at most 3 elements along the member length, with 4 integration points 

used per finite element.   

The slip critical geometrically and materially nonlinear problems were studied to 

understand the load transfer mechanism existing in RCFT members.  The typical test 

setup for these problems consisted of a simply-supported RCFT column framed by steel 

girders.  The loading was introduced as axial load proportionally applied at the tip of the 

steel girders and at the top of the columns.  The comparison of the results were performed 

based on several structural response parameters including axial strain, slip, axial force 

distribution along the element length.  The mixed finite element formulation often 

produced excellent correlations with the experiments when the stiffness of the interface is 

set to 104 MPa and when the bond strength is assumed as 0.6 MPa. The geometrically and 

materially nonlinear problems were studied under 5 different headings given below: 

1. RCFT columns under axial loading 

2. RCFT beams under pure bending    

3. RCFT beam-columns under proportional loading 

4. RCFT beam-column under non-proportional loading 

5. RCFT beam-columns under cyclic lateral loading and constant axial force 

RCFT specimens with wide ranges of material and geometric properties were studied as 

described in Table 8-1.  For the majority of the specimens, 2 to 3 finite elements per 

member with 4 integration points were found to produce very accurate comparisons with 

the experimental results.    

 The problems under dynamic loads were studied in two groups as geometrically 

nonlinear and materially linear and both geometrically and materially nonlinear types.  

Newmark-Beta ((γ = 0.5, β = 0.25)) time integration scheme was employed to solve for 

the load-deformation response of the RCFT members.  Lumped mass and proportional 

damping idealizations were assumed.  A small mesh size was selected for the 

geometrically and materially nonlinear type problems to alleviate the lumped mass 
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assumption for analytical solutions with consistent mass approach.  In the case of both 

geometrically and materially nonlinear type problems, a four-story frame structure tested 

by pseudo-dynamic testing procedure was analyzed.  The mesh size of the structure was 

decided based on the instrumentation layout.  The correlation of experimental and 

computational results were satisfactory both at the global and local level.   

The final verification study was performed for monotonically loaded steel girders 

under three point bending and cyclically loaded steel cantilevers, where the number of 

finite elements per member was selected as 4 and 3, respectively.  The number 

integration points retained at 4.  The experimental load-deformation response of the 

specimens was successfully predicted.  In addition, the initiation of local buckling and its 

effect on the load deformation response agreed with the experimental observations. 

 

Table 8-1 Ranges of Material and Geometric Properties of RCFT Specimens Studied in 

Verification Study 

 
RCFT Loading 

Type 

f c' (MPa) f y (MPa) D t/  L D/  P Po/  

1 21-110 194-835 15-74 3.0-5.0 na 

2 22-88 285-490 17-44 1.5-8.6 na 

3 31-103 254-420 15-27 10.5-34.5 na 

4 21-110 269-781 32-53 3.0-4.9 na 

5 18-40 298-590 22-24 6.0-18.0 0.15-0.40

 

 A seismic demand assessment study was conducted on representative RCFT 

frame structures.  Two stiffness-controlled three-story frames with varying material and 

geometric properties.  The first frame had RCFT columns with conventional material 

strengths and section sizes.  On the other hand, the second frame was designed to have 

RCFT columns having high strength slender steel tube sections combined with high 

strength concrete. The records were scaled with respect to the first mode spectral 

acceleration to represent 2%/50 and 10%/50 seismic hazard levels.  Conducting nonlinear 

time history analysis of the structures, the seismic demand was quantified in terms 
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multiple structural response parameters including roof drift, maximum inter-story drift 

ratio, base-shear, and deformation-based damage function values.  For both structures, 

the damage was found to be concentrated at the 1st story columns. The material 

inelasticity exhibited significant differences for both frames.  The first frame with 

conventional materials and cross-section sizes exhibited a wider range of local damage 

states for both the steel tube and the concrete core including steel yielding, local buckling 

of the flange, concrete cracking, and concrete crushing.  On the other hand, for the 

second frame, the damage was significantly concentrated on the steel tube in the form of 

local buckling.  However, for the studied frames, the mean values of the structural 

response parameters did not exhibit significant differences.  This is due to fact that both 

frames were designed with respect to the strong column-weak beam requirement 

exhibiting significant overstrength with respect to the design base-shear.  

 The final chapter of the report was devoted to introduce the recommended 

reliability and performance-based design framework for RCFT frames.  Following the 

approach adopted in FEMA-350 (2000), the demand and capacity factor format was 

adopted to account for the uncertainty and randomness in the components of the 

performance-based design such as ground motion hazard, seismic demand, and seismic 

capacity.  The dispersion in the structural response parameters from the demand analysis 

study was utilized to derive the demand factor of RCFT frames.  The capacity factor was 

calculated quantifying the dispersion in the damage function equations proposed by Tort 

and Hajjar (2003) to estimate the capacity of RCFT member against local damage states.  

Proposing the methodology to estimate the inherent randomness and uncertainty in 

seismic design of RCFT members, a performance-based design approach was 

recommended building on the prior work by Tort and Hajjar (2003) on capacity 

assessment of RCFT frames and members.   

 The studies on seismic performance of the RCFT structures indicated that the 

estimation of the initiation and the extent of the damage states of RCFT members is quite 

challenging.  The composite interaction between the two media leads to significant 

differences in damage evolution.  In their previous work, Tort and Hajjar (2003) focused 

on deriving empirical capacity equations to estimate the performance of the RCFT 
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members.  Based on the available experimental data, the main criteria to identify the 

damage was selected as the occurrence of the limit states such as concrete cracking, 

concrete crushing etc.  Despite the efficiency of this approach, the results in this study on 

inelastic seismic and inelastic non-seismic behavior of RCFT member indicated that the 

initiation of local damage states is sufficient to describe the performance since the effect 

of local damage states manifest themselves on the load-deformation response through 

accumulation and interaction with each other.  Therefore, the performance of the RCFT 

member should be related to more comprehensive damage measures.  The distributed 

mixed finite element formulation developed in this research was found to be a powerful 

tool to derive damage measures that will address the performance of the structure and 

structural members realistically. 

 

8.1. Future Research Recommendations 
 
 Despite the intended comprehensiveness of the current study, there exist several 

research areas that need further exploration in future studies.  The future research 

recommendations that will augment the current research study are summarized below: 

 

- The experimental research studies on composite structures are increasing as new 

testing and instrumentation techniques become available.  Therefore, verification 

studies can be expanded through analyzing new experimental tests in literature.  

The tests having complicated loading histories with variable and multiaxial 

loading conditions are typical examples to be investigated. 

- In the material constitutive relations adopted in this research study, the 

phenomena like confinement, local buckling, and multiaxial stress state were 

implicitly accounted for through modifying the uniaxial stress-strain relations 

based on the observed behavior at the global load-deformation level.  New multi 

dimensional material formulations allowing the simulation of confinement and 

local buckling explicitly can be developed to improve the constitutive relations. 

-  The analysis of RCFT frames was conducted assuming rigid connections at the 

beam-column joints.  This assumption influences the accuracy of the assessment 
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of seismic and demand capacity.  New connection elements compatible with the 

mixed finite element formulations of the RCFT columns and steel girders are 

recommended to be developed. 

- The damage function equations provided by Tort and Hajjar (2003) provide a very 

comprehensive definition of local capacity of RCFT members.  However, for 

some of the local damage states such concrete crushing and local buckling, a large 

dispersion is evident in the experimental results.  The damage function equations 

by Tort and Hajjar (2002) can be improved by generating more data points from 

the new experimental tests or from parametric study that can be done using the 

current mixed finite element formulation.  

- The seismic demand and capacity assessment studies can be extended to a boarder 

range of RCFT frames with different sizes or load resisting systems (e.g., braced 

frames, braced and moment frame combined). 

- The mixed finite element formulation developed for the steel girders can be 

applied to composite girders to have a more realistic representation of RCFT 

frames.   

 

 

 

 
 



APPENDIX A 
 
A.1. RCFT Mixed Finite Element Formulation 
 
 This appendix includes the supplementary equations of the RCFT beam-column 

mixed finite element formulation presented in Chapter 2.  It should be noted that the 

variables not defined in this appendix can be found in Chapter 2. 

A.1.1. Finite Element Discretization 
 

 The deformation fields along the RCFT beam-column are expressed using 

interpolation functions of quadratic, cubic Hermitian, and linear types for axial 

deformations, transverse displacements, and torsional rotations, respectively.   

 u N q= ×u             [A.1] 
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where: i x L= /  

The element end forces in the corotational coordinates are defined as axial 

moments and bending moments at both ends of the element defined for steel tube and 

concrete core, separately.  Linear shape functions are employed for approximating force 

resultants along the element length.  However, the transverse deformation fields from 

Equation A.1 are also included in the force interpolation functions to account for the P-δ 

effects while approximating moment fields.  Equations A.5 and A6 illustrates the nodal 
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force vector at the natural coordinates and cross-section force vector at an integration 

point, respectively.  
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D N Q= ×D1                [A.6] 

 366

i

N D

c

c

s

s

i i
w i i
v i i

i i
w i i
v i

1

1

1

1

1

1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0

=

−
−

−
−

−
−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

     [A.7] 

where:  w L  i i i L i ic
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A.1.2. Hellinger-Reissner Principle 
 

 In the Hellinger-Reissner principle, the virtual work equation of equilibrium and 

the compatibility equation that is put in the form of a constraint using Lagrange 

multipliers are combined as given in Equation A.8. 
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The displacement ( , 1 ), velocity ( , 1
2 ), and acceleration ( 1

2 , 1
2 ) fields 

defined for the steel tube and concrete core are stated in Equation A.9. 

1 uc u s
1
2 uc u s uc u s
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The cross-sectional strains are expressed in terms of element deformations in Equation 

A.10.  
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Equation A.11 represents the first variation of cross-section strains. 
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The deformation of the slip layer is introduced in Equation A.12. 

              [A.12] 1dsc dsc
= ×1N
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The first variation of the deformation of the slip layer is given Equation A.13. 
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The first variation of stress-resultant field in the last term of Equation A.8 is presented in 

Equation A.14. 
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Multiplying the first variation of N with 1  and then factoring out the terms of D1
2Q δ 1q  

(from Equation A.7, e.g., , , , , , , , ) a modified form 

of  can be expressed as in Equation A.15. 
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Substituting Equations A.9, A.10, A.11, A12, and A.14 into Equation A.8, the Hellinger-

Reissner variational principle can restated as in Equation A.16. 
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The terms  and are nonzero variables representing variations of the element 

displacements and forces.  Therefore, Equation A.16 yields two sets of equations given 

below: 

δ 1q
T δ 1

2Q T

g

d x k d I D d I

d x

d V d V

d
T

L

d
T

sc d d
T

sc
I

ext D
T

L

c
u
c T

u
c c

V

s
u
s T

u
s s

V

sc sc sc

c s

=

× × + × × × × + × ×

− + × − × +

× × × + × × ×
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ×

∫ ∫ ∫

∫

∫ ∫

1 1 1

1
2

1 1 1 1

N D N N q N

Q N d d

N N N N

δ δ δ

ρ ρ

( )

1
2 1

0

1 1
1

1 1

1
2

2 1 1
1

0

1 1 1 1

1

1

1

1 1

1 I

1
2

1 1 1 1
1
2

1 1

q

N N N N q

+

× × × + × × ×
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ×

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥∫ ∫μ μc

u
c T

u
c c

V

s
u
s T

u
s s

V

d V d V
c s

1 1 1 1

1

d x =

     [A.17]  

V D
T

L

= × − ×∫ 1
2N d d1 1 1

1

0

1

0( )           [A.18] 

A.1.3. Consistent Linearization of Compatibility Equation 
 

The element compatibility stated in Equation A.18 is nonlinear with respect to  

the state variables of 1 and 1  since and 1 are functions of 1  and , respectively .  

The incremental form of the compatibility equation needed to derive the consistent 

tangent stiffness equations can be obtained by consistent linearization.  The Taylor series 

expansion of Equation A.18 about the current state can be stated as in Equation A.19.  

The second and third terms on the right hand side of Equation A.19 are expanded using 

q 2Q 1d d 2Q 1q
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The linearized form of the compatibility equation to use in the state determination stage 

can be obtained by Taylor series expansion of Equation A.18 with respect to  while 

holding 1 as constant. 
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A.1.4. Consistent Linearization of Equilibrium Equation 
 Linearization of the equilibrium equation yields expressions to derive the element 

tangent stiffness.  Examining Equation 2.50, it can be seen that the equilibrium equation 

is expressed in terms of the states variables including 1 , 1 , 1 , 1
2 , and .  The 

Taylor series expansion of the equilibrium equation about the current state can be 

expressed as follows: 
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The expanded forms of the terms on the right hand side of Equation A.21 are obtained 

following the substation of the variables 1q q+ αΔ , , , 

,  into Equation A.17 and performing the derivatives with respect to 

the Taylor Series expansion parameters of 

1
2Q Q+ γΔ 1

2Q Qext ext+ βΔ

1
2q q+ θΔ 1

2q + ηΔ q

α ,γ ,β ,θ ,η and evaluating the derivates 

when α = 0 ,γ = 0 ,β = 0 , θ = 0 , and η = 0 . 



d
d

g d
d

d x d
d

d x

d

ext ext
T

α
α γ β θ η

α αα γ β θ η α γ β θ η
δ δ

α γ β θ η
| ( , , , , ) | ( ) | ( )

, , , , , , , , , , , ,= = =
+ + + + + = × ×

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ × ×
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+∫ ∫

0
1 1

2
1
2

1
2

1
2

0

1
1
2 1

0 0
1
2 1

0

1 1

q q Q Q Q Q q q q q N D N DΔ Δ Δ Δ Δ d

L

d

L
1

d
k d x d

d
k d

d
d

sc sc sc sc

T
sc d

T
sc

L

L

α
α

α
α

α

α γ β θ η
δ δ δ

α γ β θ η
δ

α γ β θ η
δ

| ( ) ( ) | ( ( ))

| ( )

, , , , , , , ,

, , , ,

= =

=

× × × + ×
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ × × × + ×
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+

× ×

∫ ∫

∫

0

1
1

1

0 0

1
1

1

0

00

1 1

1

1N N q q N N q q

N D

d d

L

d

d
T

sc

1 1 1

1

Δ Δ

sc

1

x

d I d Id
T

sc

, , , ,

L L

1 1 1

1
2 1

1
2 1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ × ×
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+

× − ×
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ × − ×
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
−

=

= =

∫

∫ ∫

N D

N d d N d d

δ
α γ β θ η

α γ β θ η α γ β θ η

α

α α

, , , ,

, , , ,

| ( )

| ( ) ( ) | ( )

sc

d
d

d
d

d x d
d

d x

L

D
T

D
T

00

0
2 1 1

0
2

0
1 1

0

1

1 1

1

d
d

d
d

d d
d

d

d
d

ext ext

c
u
c T

u
c c s

u
s T

u
s s

Vc s

α
β

α
ρ θ

α
ρ θ

α

α γ β θ η

α γ β θ η α γ β θ η

α γ β

| ( )

| ( ) | ( )

|

, , , ,

, , , , , , , ,

, , ,

=

= =

+⎡
⎣⎢

⎤
⎦⎥
+

× × × × + + × × × × +
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+∫ ∫

0

0

1 1

0

1 1

1 1

1
2

1 1
1
2 1 1

1
2

Q Q

N N q q N N q q

Δ

Δ ΔV V
V

θ η α γ β θ η
ρ η

α
ρ η

, , , , ,
( ) | ( )

= =
× × × × + + × × × × +

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∫ ∫
0

1 1

0

1 1

1 1

c
u
c T

u
c c s

u
s T

u
s s

V

d d
d

d
c s

1 1
1
2 1 1

1
2N N q q N q qV V

V

Δ ΔN  

            [A.22] 

where  ( )d
d

d xd

L

α α γ β θ η
δ

|
, , , , =

× ×
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=∫

0

1
1
2 1

0

1

N D  

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0

1
2 2

1
2

1
2 2

1
2

1
2 2

1
2

1
2

1
2 2

1
2

1
2 2

1
2 2

1
2

1

P A P AB
P C P CD

P C P CD
P CD P D

P CD P D
P A P AB

c c

c c

c c

c c

c c

s s
2 2

1
2

1
2 2

1
2

1
2

1
2 2

1
2

1
2 2

1
2

1
2 2

1
2

1
2 2

0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

P C P CD
P C P CD

P CD P D
P CD P D

P AB P B
P AB P B

s s

s s

s s

s s

c c

s s

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

×

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

×∫ d x
L

1

0

1

Δq =
 

= ×1
2K qg Δ  

 

( )1 1
1
2

1
2N D N N q G

δ
α γ β θ η

δα , , , ,
|d

L

d

L
T T

D
d

d
d x d x× ×

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= × ×
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
× = ×

=
∫ ∫

0
1
2 1

0
2

1

0
2

1 1

Δ Δq  

 375



( )d
d

k d x
sc sc

T
sc

L

α α γ β θ η=0
δ δ

|
, , , ,

1 1 1
1

1

0

1

0N N qd d× × × ×
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=∫

( )1 1 1 1 1 1N N q + q N N q
δ

α γ β θ η=0
δ δ δα

α
, , , ,

| (d d d dsc sc sc sc

T
sc

L
T

sc

L

sc
d

d
k d x k d x× × × × ×

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= × × ×
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
× = ×∫ ∫1

1
0

1

0

1 1

Δ Δ 1K qΔ

 

  ( )d
d

d
sc

T

α α γ β θ η=0
δ

|
, , , ,

1 1N d × ×
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=∫ 1

1

0D Isc
I

 

( )1 1N
δ

α γ β θ η=0α , , , ,
|d

I

D I
sc

T
sc

d
d

d× ×
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=∫ 1

1

0   

( ) ( )d
d

d xD
T

α α γ β θ η=0
|

, , , ,
1
2 1N d d2 1 1

0

1

0× − ×
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=∫

L

 

( ) ( ) ( )1
2 1

1
2

0

1
1
2

0

1

1
2 1 1

1
2 1 1

1
2

N d d N d N d

N N N k

D
T

L

D
T

L

D
T

L

D
T

d

L

D
T

d
d

d x
d

d
d x

d
d

d x

d x

2 1 1
0

2 1
0

2 1
0

2
0

2

1 1 1

1

× − ×
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= × × − × ×
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= × × − × ×

∫ ∫ ∫

∫

= =

−

α α αα γ β θ η α γ β θ η α γ β θ η

δ

| | |
, , , , , , , , , , , ,

[ ]

N

G q H q

D

L

T

d x2
0

2 22

1

×
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= × + ×

∫ 1

1
2

1
2Δ Δ

 

( )d
d extα α γ β θ η=0

|
, , , ,

2Q
⎡

⎣
⎢

⎤

⎦
⎥ = 0   

d
d

d
d

d
dc

u
c T

u
c c s

u
s T

u
s s

Vc sα
ρ

α
ρ

α γ β θ η=0 α γ β θ η=0
| |

, , , , , , , ,

1 1 2 1 1

1 1

0× × × × + × × × ×
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=∫ ∫N N q N qV V

V

N 2

 
d

d
d

d
d

dc
u
c T

u
c c s

u
s T

u
s s

Vc sα
ρ

α
ρ

α γ β θ η=0 α γ β θ η=0
| |

, , , , , , , ,

1 1 2 1 1

1 1

0× × × × + × × × ×
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=∫ ∫N N q N N qV V

V

2

 

 376



d
d

g d
d

d x d
d

d x

d

ext ext
T

γ
α γ β θ η

γ γα γ β θ η α γ β θ η
δ δ

α γ β θ η
| ( , , , , ) | ( ) | ( )

, , , , , , , , , , , ,= = =
+ + + + + = × ×

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ × ×
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+∫ ∫

0
1

0

1 1

0 0

1

0

1 1

q q Q Q Q Q q q q q N D N DΔ Δ Δ Δ Δ1
2

1
2

1
2

1
2

1
2 1

1
2

d

L

d

L

d
k d x d

d
k d

d
d

sc sc sc sc

T
sc d

T
sc

L

L

γ
α

γ
α

γ

α γ β θ η
δ δ δ

α γ β θ η
δ

α γ β θ η
δ

| ( ) ( ) | ( ( ))

| ( )

, , , , , , , ,

, , , ,

= =

=

× × × + ×
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ × × × + ×
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+

× ×

∫ ∫

∫

0

1
1

1

0 0

1
1

1

0

00

1 1

1

1 1 1 1

1

N N q q N N q q

N D

d d

L

d

d
T

sc

Δ Δ

sc

1

x

d I d Id
T

sc

, , , ,

L L

1 1 1

1
2 1

1
2 1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ × ×
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+

× − ×
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ × − ×
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
−

=

= =

∫

∫ ∫

N D

N d d N d d

δ
α γ β θ η

α γ β θ η α γ β θ η

γ

γ γ

, , , ,

, , , ,

| ( )

| ( ) ( ) | ( )

sc

d
d

d
d

d x d
d

d x

L

D
T

D
T

00

0
2 1 1

0
2

0
1 1

0

1

1 1

1

d
d

d
d

d d
d

d

d
d

ext ext

c
u
c T

u
c c s

u
s T

u
s s

Vc s

γ
β

γ
ρ θ

γ
ρ θ

γ

α γ β θ η

α γ β θ η α γ β θ η

α γ β

| ( )

| ( ) | ( )

|

, , , ,

, , , , , , , ,

, , ,

=

= =

+
⎡

⎣
⎢

⎤

⎦
⎥ +

× × × × + + × × × × +
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+∫ ∫

0

0

1 1

0

1 1

1 1

1
2

1 1
1
2 1 1

1
2

Q Q

N N q q N N q q

Δ

Δ ΔV V
V

θ η α γ β θ η
ρ η

γ
ρ η

, , , , ,
( ) | ( )

= =
× × × × + + × × × × +

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∫ ∫
0

1 1

0

1 1

1 1

c
u
c T

u
c c s

u
s T

u
s s

V

d d
d

d
c s

1 1
1
2 1 1

1
2N N q q N q qV V

V

Δ ΔN  

            [A.22] 

where: ( )d
d

d x
γ α γ β θ η

δ
|

, , , , =
× ×

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=∫

0

1
1
2 1

0

1

0N Dd

L

 

( ) ( )( )1 1
1
2

1
1
2

1

N D N N Q Q

N N Q

G QT

δ
α γ β θ η

δ
α γ β θ η

δ

γ γ
γ

, , , , , , , ,
| |d

L

d

L

d

L

T T
D

T
D

d
d

d x
d

d
d x

d x

× ×
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= × × + ×
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= × ×
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
×

= ×

= =
∫ ∫

∫

0
1
2 1

0 0
1 1

2 1

0

1
1

0

1
2

1 1

1

Δ

Δ

Δ
 

 ( )d
d

k d
sc sc

T
scγ α γ β θ η

δ δ
|

, , , , =
× × × ×

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=∫

0

1 1 1
1

1

0

1

0N N qd d

L

I  

( )1 1N N
δ

α γ β θ η
δγ , , , ,

|d d

d
sc sc

T
L

scd
k d× × × ×

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=∫

=0 0

1
1

1

1

0q I  

 ( )d
d

d
sc

T
scγ α γ β θ η

δ
|

, , , , =
× ×

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
× =∫

0

1 1 1
1

1

0N D qd
I

I   

( )1N q
δ

α γ β θ ηγ , , , ,
|d

I

D I
sc

T
sc

d
d

d× ×
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
× =∫

=1 0

1 1
1 0  

 377



 ( ) ( )d
d

d x d xD
T

L

D
T

L

γ α γ β θ η
| ( ) ( )

, , , , =
× − ×

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= × − ×
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∫ ∫
0

2 1 1
0

2 1 1
0

1 1

1
2 1N d d N d dΔ 1  

( ) ( )

' '
' '

' '
' '

Δ

Δ Δ
Δ Δ

Δ Δ
Δ Δ

N d dD
T

L
c c

c c

s s

s s

A P B P
A P B P

A P B P
A P B P

2
0

1

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

∫ × − × =

× ×
× ×

× ×
× ×

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

1 1
1d x

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

× − ×∫
0

1 1

1L

d x( )d d 1  

     =  ×M Qd
T Δ

 

 ( )1
2N dD

T
L d

d
d x2

0
1

1

0

1

0× ×
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

=
∫ γ α γ β θ η

|
, , , ,

 

 

( )

( )

1
2

1
2

1
2 1

1
2

1
2

1
2 1 1

1
2

1
2 1

N N k N Q

N k N Q Q Q

N k N

D
T

D
T

D
T

D
T

d
d

d x d x

d x

d x

2 1
1

0
2

1 1

0

2
1 1

0

2
1 1

0

1 1

1

1

× ×
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= × × × ×
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= × × × − + × ×
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= × × ×
⎡

⎣
⎢
⎢

⎤

⎦
⎥

=

−

−

−

∫ ∫

∫

∫

γ

γ

α γ β θ η
|

, , , , 0
d

L

D1

L

D1

L

D1

L

1

Δ

⎥
×

= ×

Δ

Δ

Q

H Q1
2

12
T

( )d
d extγ α γ β θ η=0

|
, , , ,

1
2 0Q

⎡

⎣
⎢

⎤

⎦
⎥ =  

d
d

d
d

d
dc

u
c T

u
c c s

u
s T

u
s s

Vc sγ
ρ

γ
ρ

α γ β θ η=0 α γ β θ η=0
| |

, , , , , , , ,

1 1 1 1
1
2 1 1 1 1

1
2

1 1

0× × × × + × × × ×
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=∫ ∫N N q N N qV V

V

  

d
d

d
d

d
dc

u
c T

u
c c s

u
s T

u
s s

Vc sγ
ρ

γ
ρ

α γ β θ η=0 α γ β θ η=0
| |

, , , , , , , ,

1 1 1 1
1
2 1 1 1 1

1
2

1 1

0× × × × + × × × ×
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=∫ ∫N N q N qV V

V

N  

 378



d
d

g d
d

d x d
d

d x

d
d

ext ext
T

β
α γ β θ η

β β

β

α γ β θ η α γ β θ η
δ δ

α γ β θ η

α

| ( , , , , ) | ( ) | ( )

|

, , , , , , , , , , , ,= = =
+ + + + + = × ×

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ × ×
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+∫ ∫

0
1

2 2 2 2

0

1
1
2 1

0 00

1 1

q q Q Q Q Q q q q q N D N DΔ Δ Δ Δ Δ d

L

d

L
1

1
2 1

, , , , , , , ,

, , , ,

( ) ( ) | ( ( ))

| ( )

γ β θ η
δ δ δ

α γ β θ η
δ

α γ β θ η
δ

α
β

α

β

= =

=

× × × + ×
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ × × × + ×
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+

× ×

∫ ∫

∫

0
1

0 0
1

0

00

1 1

1

1
1
2 1 1

1
2

1
2

1
2 1

1

N N q q N N q q

N D

d d

L

d

d
T

sc

sc sc sc sc

T
sc d

T
sc

L

L

k d x d
d

k d

d
d

Δ Δ

sc

1

x

d I d Id
T

sc

, , , ,

L L

1 1 1

1
2 1

1
2 1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ × ×
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+

× − ×
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ × − ×
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
−

=

= =

∫

∫ ∫

N D

N d d N d d

δ
α γ β θ η

α γ β θ η α γ β θ η

β

β β

, , , ,

, , , ,

| ( )

| ( ) ( ) | ( )

sc

d
d

d
d

d x d
d

d x

L

D
T

D
T

00

0
2 1 1

0
2

0
1 1

0

1

1 1

1

d
d

d
d

d d
d

d

d
d

ext ext

c
u
c T

u
c c s

u
s T

u
s s

Vc s

β
β

β
ρ θ

β
ρ θ

β

α γ β θ η

α γ β θ η α γ β θ η

α γ β

| ( )

| ( ) | ( )

|

, , , ,

, , , , , , , ,

, , ,

=

= =

+
⎡

⎣
⎢

⎤

⎦
⎥ +

× × × × + + × × × × +
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+∫ ∫

0

0

1 1

0

1 1

1 1

1
2

1 1
1
2 1 1

1
2

Q Q

N N q q N N q q

Δ

Δ ΔV V
V

θ η α γ β θ η
ρ η

β
ρ η

, , , , ,
( ) | ( )

= =
× × × × + + × × × × +

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∫ ∫
0

1 1

0

1 1

1 1

c
u
c T

u
c c s

u
s T

u
s s

V

d d
d

d
c s

1 1
1
2 1 1

1
2N N q q N q qV V

V

Δ ΔN  

            [A.23] 

On the right hand side of Equation A.23, the only non-zero expression is the ninth term 

since the rest of the variables are not functions of .   2Qext
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In Equation A.24, all the expressions on the right hand side except the tenth term are not 

functions of the state variable 2 .  Therefore, the only nonzero term on the right hand side 

of Equation A.24 is the tenth term as given below: 
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In Equation A.25, all the expressions on the right hand side except the eleventh term are 

not functions of the state variable .  Therefore, the only nonzero term on the right hand 

side of Equation A.25 is the eleventh term as given below: 
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A.1.5. Derivation of Cross-Section Stiffness 
 

 In the current research, a fiber-based distributed plasticity approach is employed.  

RCFT cross-sections at each integration point along the element length are divided into 
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individual concrete and steel fibers as shown in Figure A.1.  These material fibers are 

associated with a constitutive model.  During nonlinear analysis, the state of each fiber is 

updated based on the current strain calculated at the centroid of the fibers.  Exploiting the 

assumption that plane sections remain plane and normal to the longitudinal axis, the 

centroidal strain of a material fiber is calculated from the cross-sectional strain and 

curvatures.  The cross-sectional force and stiffness terms are then calculated through 

numerical integration over the steel and concrete fibers.    

y 

z 

y 

z 

y 

z 

Steel Tube Concrete 
Core RCFT = + 

 
Figure A 1 Discretization Scheme for RCFT Cross-Section 

 
Incremental cross-sectional strains can be related to the fiber strains as given in Equation 

A.26.    
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where: is incremental axial strain of concrete fibers Δ ε c

 is incremental axial strain of steel fibers Δ ε s

 Y is the compatibility matrix 
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 , coordinates of concrete fibers with respect to y-z axes yc zc

 , coordinates of concrete fibers with respect to y-z axes ys zs

Using the Hooke’s Law, the relationship between incremental fiber strains and stresses 

can be developed as follows: 
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 is incremental axial stress of concrete fibers Δσ c

 is incremental axial stress of steel fibers Δσ s

 1E c is tangent modulus of concrete fibers 

 1E s is tangent modulus of steel fibers 

Incremental cross-sectional forces can be expressed as given in Equation A.28: 

   [A.28] Δ Δ ΔD Y Y E Y d k= × × = × × ×
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ × = ×∫ ∫T

L
T

t

L

d A d Aσ
0 0

1 1

Δd

where: is the cross-sectional stiffness matrix k

 

 

k Y E Y= × × ×
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ =

− −
−
−

− −
−
−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

∫ T
t

L

c
z
c

y
c

z
c

z
c

yz
c

y
c

yz
c

y
c

s
z
s

y
s

z
s

z
s

yz
s

y
s

yz
s

y
s

d A

EA EQ EQ
EQ EI EI
EQ EI EI

EA EQ EQ
EQ EI EI
EQ EI EI

0

1

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

The cross-section flexibility matrix is obtained by taking the inverse of cross-section 

stiffness matrix. 

          [A.29] f k= −1

where: is the cross-section flexibility f

Within the formulation, the locations of the fibers are assumed to stay constant with 

respect to the reference axes located at the centroid of the cross-section.    

 

A.2. Mapping of Element Forces, Displacements, and Stiffness 
between Natural and Global Coordinate Systems 

 

A.2.1. Transformation of Element Forces 
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 The incremental element forces in natural coordinates can be transformed into 

incremental element forces in local coordinates as given in Equation A.25.   
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A.2.2. Derivation of External Stiffness Matrix 
 The unbalanced forces ( 1 ) generated due to rigid body motion (Figures 2.13d, 

2.14d) are presented in vector format as given in Equation A.26. 

FU

 

[ ]1 1 1 1 1 1 1F F F F F F FU

T
= Psi Mi Pci Psj Mj Pcj     [A.26] 

 where: 

( ) ( )
1

1 1

1

1 1

1FPsi

yi
s

yj
s

rgy

zi
s

zj
s

rgz
s

rgz
s

rgy

M M

L

M M

L
P P= −

+
× −

+
×

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ − × − ×

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥1 1

1
1

1
1θ θ θ

T

θ    

[ ]1FMi = 0 0 0
T

 

 

 383



( ) ( )
1

1 1

1

1 1

1
~ ~FPci

yi
c

yj
c

rgy

zi
c

zj
c

rgz
c

rgz
c

rgy

M M

L

M M

L
P P= −

+
× −

+
×

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ − × − ×

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥1 1

1
1

1
1θ θ θ

T

θ  

( ) ( )
1

1 1

1

1 1

1
1 1FPsj

yi
s

yj
s

rgy

zi
s

zj
s

rgz
s

rgz
s

rgy

M M

L

M M

L
P P=

+
× +

+
×

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ × ×

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥1 1 1θ θ θ

T

1θ

  [ ]1FMj = 0 0 0
T

( ) ( )
1

1 1

1

1 1

1
1 1FPcj

yi
c

yj
c

rgy

zi
c

zj
c

rgz
c

rgz
c

rgy

M M

L

M M

L
P P=

+
× +

+
×

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ × ×

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥1 1 1θ θ θ

T

1θ  

Rigid body rotation of the RCFT beam-column element with respect to local and y z  
axes produces the deformations of , given below in Figure A.2, respectively.     θrgy θrgz
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1z

Figure A 2 Rigid Body Rotation of the RCFT Beam-Column in Local Coordinates 
 

θrgy  and can be expressed in terms of lateral translations as given in Equations A.27 

and A.28, respectively. 
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Substituting Equation A.27 and A.28 into Equation A.26 and factoring out the terms of 

, 1 can be derived as in Equation A.29.  1q K ge
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While deriving 1  additional terms that are canceling each other was added to ensure 

the symmetry.  This was performed based on the assumption that the axial deformations 

at two ends of the members are equal to each other under rigid body deformation (e.g., 

, ) (Yang, 1994).
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